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Abstract

Automatic Target Recognition (ATR) in Synthetic
Aperture Radar (SAR) imagery often requires billions of
operations per second. This paper describes a compact
scalable system developed at Myricom for high-performance
implementation of the template-based SAR ATR algorithms
developed by Sandia National Laboratories. The Myricom
system is mapped on the multiple, concurrent, field
programmable array (FPGA) computing nodes connected by
Myrinet. These FPGA nodes achieve high efficiency, through
the exploitation of the unique characteristics of the ATR
algorithm in FPGA. The contributions of this paper are the
descriptions of the architectural designs for the ATR system on
the scalable FPGA nodes.

1.0 Introduction

As in most real-time image processing algorithms, Sandia
National Laboratories’ (SNL) real-time ATR in SAR imagery
require high bandwidth and large computation resource.
Department of defense is concerned with such systems
functioning correctly and efficiently in limited space and
power. Historically, these systems have been built using
custom hardware. However, with very high non-recurring
engineering costs for low volume ASICs and subsequent
development of new algorithms make the custom special-
purpose hardware not favorable. To accommodate the demand
and the flexibility, the two-level multicomputer using the FPGA
and Myrinet have been developed by Myricom under Defense
Advanced Research Project Agency funding[1-5].

2.0 Myricom FPGA nodes

A family of message-passing concurrent computers called
multicomputers have been developed to provide a highly
scalable and parallel computer system. These systems are
ensembles of programmable computer nodes with its own
memory connected by a message-passing network[6]. The
concept of two-level multicomputer is based on this
architecture with each node consisting two levels of processors
and a local memory. The first-level processor is mainly
responsible for the communication tasks and the second-level
processor is used for the application specific tasks.  Such design
separates the communication layer from the computation layer
of the system, thereby allowing a modularity in each node[7].

Historically, the most common use for FPGA has been in
product prototyping. Its programmable circuits allow immediate
research and development of the hardware products. Once the
design is stable, FPGA’s high power consumption and high cost
per unit makes them less suitable than ASICs in produce in high

volume. However, in certain low volume applications, FPGA’s
reconfigurability can play a key role in producing specialized
circuits with efficient execution. The applications with
effective speed-up on FPGA usually contains a large amount of
parallel computations in streaming data. Examples of these
applications include cryptography, neural networks, image and
audio processing.[8-11] Even a different approach of the
similar algorithm presented in this paper have been
programmed into FPGAs to produce effective performance
increase[12].

The FPGA nodes developed by Myricom integrates the
concepts of reconfigurable computing with the two-level
multicomputer to promote flexibility of programmable
computational components in a highly scalable network
architecture. These nodes are two-level multicomputers whose
first level provides the general purpose infrastructure of
Myrinet network using the LANai RISC microprocessor. The
FPGA function as reconfigurable second level processor
responsible for the application specific computing.

3.0 ATR Algorithm

The Sandia SAR ATR system locate and identify the objects of
certain class in a image by calculating high probability of
detection and low false alarm rate. The ATR algorithm
implemented on the Myricom FPGA node is part a hierarchy of
algorithms to reduce the processing demands for the image
processing. The computation engine mapped on the FPGA of
the node is an indexing algorithm called the Second-Level-
Detection (SLD). SLD is designed for finding the targets in-
the-clear scenarios[1][2].

The ATR system initially collects SAR images from the
sensors. These images are then passed on to the Focus of
Attention (FOA) subsystem. The FOA determines the areas
where targets may be located then extract the corresponding
images. Then the SLD driver sends this image and the
corresponding templates to the FPGA node to find the targets
with the highest match probability in the image.

3.1 SLD Computation

The FOA stage identifies interesting image and composes a list
of targets suspected to be in that image. Having access to range
and altitude information, the FOA algorithm also determines
the elevation for that image, without having to identify the
target first. The FOA tasks uses the SLD stage to evaluate the
likelihood that the suspected targets are actually in the given
image and their position. To do so, the FOA defines tasks for
the SLD stage, where each task is composed of an image, a
suspected target with its elevation, one or two orientation
intervals, and a few parameters.



The SLD task is to take the extracted image chip, match it
against a list of provided target hypotheses, and return the hit
information for each image chip consisting of the best two
orientation matches, the degree of matching, the corresponding
pixel location, and information about which target hypothesis
gave rise to these two best matches.

SLD is a binary silhouette matcher that has a bright mask
and a surround mask that are mutually exclusive. The bright
mask and surround mask are 32 by 32 bit maps, each having
only about 100 non-zero pixels.

The system has a database of target models. For each
target, there are typically three elevation views of 72 templates
defined to correspond all-around views. Each template is
composed of several parameters and two masks, a "bright
mask" and a "surround mask", where the former defines the
image pixels that should be bright for a match, and the latter
defines the ones that should not.

Upon receiving the task from the FOA subsystem, the
SLD unit matches all the stored templates for this target and
elevation and the applicable orientations with the image chip,
and computes the level of matching. The two hits with the
highest match level are reported to the SLD driver as the most
likely candidates to include targets. For each hit, the target type,
its orientation, and its elevation, the exact position of the hit in
the search area, and the match level are returned. After
receiving this information the SLD driver reports this
information to the ATR system.

Each target-orientation template consists of two 32 by 32
bit maps, one representing the bright mask and the other
representing the surround mask. The image is made of 64 by
64 one byte pixels. The FOA algorithms guarantee that the
target, if any, is located in the image such that a six pixel
margin around the image is guaranteed not to include the target.
Hence, the area of interest in an image is 52 by 52 pixels. In
this area, there are 21 by 21 possible places to position the
mask. This defines a search-area of 21 search-rows, each 21
position wide. The position (x,y) in the search area
corresponds to positioning the lower left corner of the mask
over the pixel (x,y) of the image. Hence, 882 matches have to
be performed for each orientation that is specified in the
matching task.
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The purpose of the first step in the SLD algorithm called
the "shape sum" is to distinguish the target from its surrounding
background. It consists of adaptively estimating the

illumination for each position in the search area assuming that
the target is at that orientation and location. If the energy is too
little or too much then no further processing for that position
for that template match is required. Hence, for each mask
position in the search area, a specific threshold value is
computed as in eq. 1.
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The next step in the algorithm distinguish the target from

the background by thresholding each image pixel with respect
to the threshold of the current mask position, as computed
before. The same pixel may be above the threshold for some
mask positions, but below it for others. This threshold
calculation determines the actual bright and surround pixel for
each position. The calculation consists of dividing the shape
sum by the number of pixels in the bright mask and subtracting
a template specific Bias constant.
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As shown in eq. 3, the pixels under the bright mask that

are greater than or equal to the threshold are counted, and if this
count exceeds the minimal bright sum (BSmin) the processing
continues. Now in eq. 4, the pixels under the surround mask
that are less than the threshold are counted. If this count
exceeds the minimal surround sum (SSmin) it is declared a hit. 
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Once the position of the hit is determined, the quality of

the hit is calculated by taking the average of the percent of
bright and surround pixels that were correct as in eq. 5. This
quality value is sent back to the driver with the position to
determine two best targets.
4.0 FPGA Implementation

Although it is possible to reconfigure the FPGAs during the run
time, they are not well suited for real-time reconfiguration. This
is because most FPGAs available today can not reconfigure and

 

Term 1 2 3 4 5 6 7 8 9

u 0 0 0 1 1 1 2 2 2

v 0 1 2 0 1 2 0 1 2

SM00= B00M00+ B01M01+ B02M02+ B10M10+ B11M11+ B12M12+ B20M20+ B21M21+ B22M22

SM01= B00M01+ B01M02+ B02M03+ B10M11+ B11M12+ B12M13+ B20M21+ B21M22+ B22M23

SM02= B00M02+ B01M03+ B02M04+ B10M12+ B11M13+ B12M14+ B20M22+ B21M23+ B22M24

SM03= B00M03+ B01M04+ B02M05+ B10M13+ B11M14+ B12M15+ B20M23+ B21M24+ B22M25

Table 1: Expanded shape sum equation with x=0 and y=0 to 3



execute the same time. Hence, minimizing reconfiguration time
during computation is essential in effective FPGA use. Never
the less, when we use the FPGAs as compute engines, the
hardware can take on a large range of task parameters through
reconfiguration.

Since most of the internal circuitry is available to the
programmers as the building blocks, efficient designs can
configure the device to perform many operations concurrently.
Such parallel execution of the device, limited by the internal
logic capacity, enables the FPGA to out-perform the general
purpose processor. Thus, to efficiently use the FPGA
resources, the understanding of the application is important.

4.1 Parallel Execution

The SLD computing tasks represented with the eq. 1, 3, and 4
need to compute the image correlation of the sliding template
masks with the image. In order to determine the design
strategies, we  examine each equation by applying the algorithm
on a smaller data set consisting 6 by 6 image, 3 by 3 mask bit
map and 4 by 4 result matrix.  

For this data set, the shape sum calculation for a mask
requires multiplying all nine mask bits with the corresponding
image pixels and summing them to find one of sixteen results.
By examining the expanded equation as in table 1, some
important characteristic of the equation is observed. First, the
same Buv is used to calculate the nth term of all the shape sum
results. Thus, when the summation calculations are done in
parallel, Buv coefficient can be broadcasted to all the units that
calculate each results. Second, the image data that is in the nth

term of the SMxy is in the (n+1)th term of SMxy-1 except when v
returns to 0; the image pixel located in the subsequent row.
This fact is useful in implementing the pipeline data path for the
image pixels through the parallel summation units.

Based on the above understanding, parallel computation
unit as in figure 1 can be designed. In order not to waste time
while changing the rows of pixels, the pixels pipeline has the
capability either to operate as a pipeline or to be directly loaded
from another set of registers. At every clock cycle each Uy unit
performs one operation, v is incremented modulo 3, and the
pixel pipeline shifts by one stage (U1 to U0, U2 to U1, ...). When
v returns to 0, u is incremented modulo 3, and the pixel pipeline
is loaded with the entire (u+x)th row of the image. When u
returns to 0, the results are offloaded from the Uy, their
accumulators are cleared, and x is incremented modulo 4.
When x returns to 0, this computing task is completed. The

initial loading of the image pixel pipeline is from the image-
word pipeline that is word wide, hence 4 times faster than the
image-pixel pipeline. This speed advantage guarantees that it
will be ready with the next image row when u returns to 0.

4.2 Computation Unit

Developing different FPGA logic for eq. 1, 3, and 4 is an
interesting approach to solving this problem. At the end of each
stage the FPGA device would be reconfigured with the optimal
structure for the next task[12]. As appealing as this approach
may sound, it is not very practical since currently available
FPGA devices have typical reconfiguration times of hundreds
of milliseconds during which the FPGA can not be used for the
computations. In addition, each specific set of template
configurations has to be designed and compiled before any
computation can occur. This process is a time consuming
procedure which does not allow dynamic sets of templates to be
immediately used in the system. Therefore, we resisted this
approach to perform dynamic reconfigurations. Instead, we
designed one structure to perform all three stages as shown in
figure 2.

As described in the equations, in all three stages there is a
need to bring in the image pixels according to the same
sequence while broadcasting one bit from a mask. Then it
needs to modify the value of Uy as a function of a certain pixel
and mask bits. For the shape sum calculation, the 8-bit pixel
value M is accumulated into the 16-bit result in Uy only if the
value of the corresponding mask bit is 1. Whereas, in bright
and surround sum, the 8-bit result Uy is incremented by one
based on the value of the mask bit as well as the comparison of
M with the corresponding threshold value, THy. Since THy

does not depend on u and v, it is a constant until the next
change of x. These observations gave us some hints to
revealing a path to common computation steps.

Adding an 8-bit number to a 16-bit number is the same as
adding two 8-bit numbers, M, and the lower 8-bits while
conditionally incrementing the higher 8-bits of Uy when the
addition overflows. This suggests that each stage needs a
conditional 8-bit incrementer and an 8-bit adder for either
adding the pixel M to Uy or for comparing M with THy. This
operation is conditionally executed based on the value of the
mask bit.

Both bright and surround sum evaluate the same condition
of comparing M with THy.  The difference is that the bright sum
is incremented when the overflow is zero while surround sum
increment when it is one. This suggested that the unit can

LU

Figure 2: Computation logic for equations 1, 3, and 4
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perform both sums at the same time. This design choice not
only introduced a concurrency in the computation, but also
reduced the required logic in half. They share the distribution
of M and THy, and the 8-bit adder, but each requires its own
broadcast of the mask bits and its own 8-bit incrementer.

5.0 FPGA nodes

As described in the previous section, there are two tasks that the
FPGA processes for each image-template pair. First, it
calculates a shape sum and then it simultaneously calculates the
bright and surround sums. However, there are two additional
computations that the FPGA nodes must perform. One is to
calculate the thresholds from the shape sums, eq. 2, and the
other process is to calculate the two best matches using the hit
quality and to report this to the host, eq. 5.

Since these two equations require less iterations of more
complex computations, the idle cycles of the LANai RISC
processors are used to compute them while the FPGAs are
working on the summation tasks.

By carefully pipelining each steps of the algorithm, both
processors of the FPGA node are used concurrently to complete
the SLD task.

5.1 Scalable system

Myricom LANai processor is responsible for the network
processes of the FPGA nodes. Therefore, the FPGA nodes can
easily become part of any Myrinet network. Myrinet offers
high bandwidth interconnection in a highly scalable, switched
network. Within such framework, one can build myriad of
network topologies consisting of FPGA nodes.

Topology on figure 3a can have each FPGA node work
independently from other nodes to find matches. Each node
contains a complete set of templates. The host will give each
node a match task and the node will find the best two matches
and return the answer to the host. This architecture is fault
tolerant with respect to node failures; if the host does not hear
from a node it can easily resend the match task to another node,
and continue to find matches with the remaining nodes. In such
topology, tasks can be immediately assigned to each nodes
upon the completion of previous task. Thus, each nodes are
highly utilized.

When the template set is very large, each node may not be
able to store all the templates. Also, if the number of nodes in
the system is quite large, the first topology demands more
bookkeeping processing on the host. This can cause the host
system to become the bottleneck of the system. Figure 3b is an

example of a data flow topology where the task can be
partitioned by distributing the templates over the nodes which
are arranged in a chain. Images and their current best matches
are passed down the chain from node to node as each node
finishes matching an image against the node’s subset of the
templates. The two best matches so far are passed along with
the image and then returned to the host by the last node.
However, unlike the first topology, when one node or link is
lost or becomes faulty, the nodes must re-route the match tasks,
redistribute the templates of the "lost" node before continuing
the tasks. Dynamic load balancing is also not optimal because,
even if the same number of templates have to be matched by
each node, the amount of work that each node has to do varies,
and a node that is momentarily overwhelmed may create idle
nodes downstream.

Another topology can be built by combining the two
discussed above as shown in figure 3c. Such hybrid approach
would include the best of both architectures and allow users to
customize their system to fit their needs. Such system are
highly scalable as well as fault tolerant.

6.0 Results

The test and measurement setup is as shown in the figure 4.
The host is a SparcStation IPX running SunOS 4.1.3 with a
Myrinet interface board with 512K memory. The FPGA node,
consisting of Lucent technologies ORCA FPGA 40K and
Myricom LANai 4.1 running in 3.3V at 40 MHz, communicate
with the host through a 8-port Myrinet switch.

Without additional optimization, our implementation of
the complete ATR algorithm on one FPGA node processes over
900 templates per second. Each template requires about 450
thousand iterations of 1-bit conditional accumulate for the
complete shape sum calculation. Then the threshold calculation
require one division followed by subtraction. The bright and
surround sum compares all the image pixels against the
threshold results. Then 1-bit conditional accumulate is
executed for each sums. Then the quality values need to be
calculated using two divides, add, and a multiply.

Given 1-bit conditional accumulate, subtract, divide,
multiply, and 8-bit compare are one operation each, the total
number of 8-bit operations to process one 32 by 32 template
over a 64 by 64 image is approximately 3.1 million operations.
This indicates that the FPGA node successfully runs over 2.8
billion 8-bit operations per second (Giga operations per
second/GOPS).

After the simulations, we found that sparseness of the
actual templates reduced the average valid rows of the

Figure 4: Performance test configuration

Sparc
Station

IPX
SunOS

SBUS
Myrinet
interface

LANai
4.1

ORCA
40K

FPGA

8-port
Switch

The Host FPGA node

Figure 3: FPGA node topologies

SLD
Driver

1 2 N.. 1 2 N.. N-1.. N1 n

2 n-1

.. ..

SLD
Driver

SLD
Driver

(a) (b) (c)



templates to be approximately one half of the number of the
total template row. When we took advantage of this
observation in the FPGA design, the performance increased to
approximately 4.0 GOPS. Further simulations revealed more
room for improvements, such as dividing the shape sum within
the FPGA, transposing narrow template masks, and skipping
invalid threshold lines. Although these optimizations were not
implemented into the FPGA design, the simulation indicated an
average of 7.75 GOPS of performance with all the
optimization.

7.0 Conclusion

The correlations are mapped to a linear systolic pipeline. A
high degree of parallelism is exploited. In addition to
computing an entire row of correlation results in parallel, the
FPGA performs the address calculations, data loading, and
correlation in parallel. Short inter-register paths allow the
design to run at 40MHz, which is limited by the clock rate at
which external memory can be fetched.

In this paper we have described a scalable, reconfigurable
system under the two-level multicomputer architecture. This
system is scalable by using an embedded high-performance
networking technology (Myrinet) that has programmable
network interfaces. These network interfaces contain
microprocessors for local control of the FPGA. 

We have demonstrated a scalable FPGA system for an
automatic target recognition application. For this application
we have measured 4 GOPS in performance. Such
measurements were about ten times faster than the system in
use at that time as well as about four times faster than the
algorithm running on the PowerPC based multicomputer; which
was developed during the same period[1].

Further analysis suggested that the performance may be
double with additional optimizations, yielding up to 500 GOPS
per VME-6U sub-rack with 16 baseboards each with four
FPGA nodes. More importantly this performance scales
linearly with the number of nodes due to the modularity of each
node and the scalability of the message passing network. The
only limit to its scalability is the ability of the host to dispatch
and handle matching tasks.

The above results were measured using the FPGAs
available during 1996. Due to the nature of the algorithm, the
performance can scale linearly within the FPGA design by
simply adding more computation units to take advantage of the

parallelism. With increasing speed and logic areas in FPGA
technology today, such improvement is unpredictably large.
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