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Abstract

Automatic  Target  Recognition  (ATR)  in  Synthetic  
Aperture  Radar  (SAR)  imagery  often  requires  billions  of  
operations  per  second.   This  paper  describes  a  compact  
scalable system developed at  Myricom for  high-performance  
implementation  of  the  template-based  SAR  ATR  algorithms 
developed  by  Sandia  National  Laboratories.   The  Myricom 
system  is  mapped  on  the  multiple,  concurrent,  field  
programmable array (FPGA) computing nodes connected by  
Myrinet. These FPGA nodes achieve high efficiency, through 
the  exploitation  of  the  unique  characteristics  of  the  ATR 
algorithm in FPGA.  The contributions of this paper are the  
descriptions of the architectural designs for the ATR system on 
the scalable FPGA nodes.

1.0 Introduction

As  in  most  real-time  image  processing  algorithms,  Sandia 
National Laboratories' (SNL) real-time ATR in SAR imagery 
require  high  bandwidth  and  large  computation  resource. 
Department  of  defense  is  concerned  with  such  systems 
functioning correctly and efficiently in limited space and power. 
Historically,  these  systems  have  been  built  using  custom 
hardware.  However, with very high non-recurring engineering 
costs  for  low volume ASICs and subsequent  development of 
new  algorithms make the custom special-purpose hardware not 
favorable.  To accommodate the demand and the flexibility, the 
two-level  multicomputer  using  the  FPGA and  Myrinet  have 
been developed by Myricom under Defense Advanced Research 
Project Agency funding[1-5].

2.0 Myricom FPGA nodes

A  family  of  message-passing  concurrent  computers  called 
multicomputers  have  been  developed  to  provide  a  highly 
scalable  and  parallel computer  system.   These  systems are 
ensembles  of  programmable  computer  nodes  with  its  own 
memory  connected  by  a  message-passing  network[6].   The 
concept  of  two-level  multicomputer   is  based  on  this 
architecture with each node consisting two levels of processors 
and  a  local  memory.   The  first-level  processor  is  mainly 
responsible for the communication tasks and the second-level 
processor is used for the application specific tasks.  Such design 
separates the communication layer from the computation layer 
of the system, thereby allowing a modularity in each node[7].

Historically, the most common use for FPGA has been in 
product prototyping. Its programmable circuits allow immediate 
research and development of the hardware products.  Once the 
design is stable, FPGA's high power consumption and high cost 

per unit makes them less suitable than ASICs in produce in high 
volume.  However, in certain low volume applications, FPGA's 
reconfigurability can play a key role in producing specialized 
circuits with efficient execution.  The applications with effective 
speed-up on FPGA usually contains a large amount of parallel 
computations in streaming data.  Examples of these applications 
include  cryptography,  neural  networks,  image  and  audio 
processing.[8-11]   Even  a  different  approach  of  the  similar 
algorithm presented in this paper have been programmed into 
FPGAs to produce effective performance increase[12].

The FPGA nodes developed by Myricom integrates  the 
concepts  of  reconfigurable  computing  with  the  two-level 
multicomputer  to  promote  flexibility  of  programmable 
computational  components  in  a  highly  scalable  network 
architecture.  These nodes are two-level multicomputers whose 
first level provides the general purpose infrastructure of Myrinet 
network using the LANai RISC microprocessor.   The FPGA 
function as  reconfigurable second level processor  responsible 
for the application specific computing.

3.0 ATR Algorithm

The Sandia SAR ATR system locate and identify the objects of 
certain  class  in  a  image  by  calculating  high  probability  of 
detection  and  low  false  alarm  rate.   The  ATR  algorithm 
implemented on the Myricom FPGA node is part a hierarchy of 
algorithms to  reduce  the  processing  demands  for  the  image 
processing.  The computation engine mapped on the FPGA of 
the  node  is  an  indexing  algorithm called  the  Second-Level-
Detection (SLD).  SLD is designed for finding the targets in-
the-clear scenarios[1][2].

The ATR system initially collects SAR images from the 
sensors.   These  images are  then passed  on  to  the  Focus  of 
Attention (FOA) subsystem.  The  FOA determines the  areas 
where targets  may be located then extract  the corresponding 
images.   Then  the  SLD  driver  sends  this   image  and  the 
corresponding templates to the FPGA node to find the targets 
with the highest match probability in the image.

3.1 SLD Computation

The FOA stage identifies interesting image and composes a list 
of targets suspected to be in that image. Having access to range 
and altitude information, the FOA algorithm also determines the 
elevation for that image, without having to  identify the target 
first.   The  FOA tasks  uses  the  SLD  stage  to  evaluate  the 
likelihood that  the suspected targets  are actually in the given 
image and their position. To do so, the FOA defines tasks for 
the SLD stage,  where each task is composed of an image, a 
suspected  target  with  its  elevation,  one  or  two  orientation 
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intervals, and a few parameters.
The SLD task is to take the extracted image chip, match it 

against a list of provided target hypotheses, and return the hit 
information  for  each  image chip  consisting  of  the  best  two 
orientation matches, the degree of matching, the corresponding 
pixel location, and information about  which target  hypothesis 
gave rise to these two best matches.

SLD is a binary silhouette matcher that has a bright mask 
and a surround mask that  are mutually exclusive. The bright 
mask and surround mask are 32 by 32 bit maps, each having 
only about 100 non-zero pixels.

The  system has  a  database  of  target  models.  For  each 
target, there are typically three elevation views of 72 templates 
defined  to  correspond  all-around  views.   Each  template  is 
composed  of  several  parameters  and  two  masks,  a  "bright 
mask" and a  "surround mask",  where  the  former defines the 
image pixels that  should be bright for a match, and the latter 
defines the ones that should not.

Upon  receiving the  task  from the  FOA subsystem,  the 
SLD unit matches all the stored templates for this target  and 
elevation and the applicable orientations with the image chip, 
and computes  the level of matching.  The two  hits  with the 
highest match level are reported to the SLD driver as the most 
likely candidates to include targets. For each hit, the target type, 
its orientation, and its elevation, the exact position of the hit in 
the  search  area,  and  the  match  level  are  returned.   After 
receiving  this  information  the  SLD  driver  reports  this 
information to the ATR system.

Each target-orientation template consists of two 32 by 32 
bit  maps,  one  representing  the  bright  mask  and  the  other 
representing the surround mask.  The image is made of 64 by 64 
one byte pixels. The FOA algorithms guarantee that the target, 
if any,  is located  in the  image such  that  a  six pixel margin 
around  the  image  is  guaranteed  not  to  include  the  target. 
Hence, the area of interest in an image is 52 by 52 pixels.  In 
this area,  there  are  21  by 21  possible places to  position the 
mask. This defines a  search-area of 21 search-rows,  each 21 
position wide.  The position (x,y) in the search area corresponds 
to positioning the lower left corner of the mask over the pixel 
(x,y) of the image.  Hence, 882 matches have to be performed 
for each orientation that is specified in the matching task.

SM x,y
u 0

31


v31

31

Buv M xu,y v ( eq. 1)

The purpose of the first step in the SLD algorithm called 
the "shape sum" is to distinguish the target from its surrounding 
background.   It  consists  of  adaptively  estimating  the 

illumination for each position in the search area assuming that 
the target is at that orientation and location. If the energy is too 
little or too  much then no further processing for that position 
for  that  template  match  is  required.  Hence,  for  each  mask 
position  in  the  search  area,  a  specific  threshold  value  is 
computed as in eq. 1.

TH x,y
SM x,y

BC
Bias (eq. 2)

 
The next step in the algorithm distinguish the target from 

the background by thresholding each image pixel with respect 
to  the  threshold  of  the  current  mask  position,  as  computed 
before.  The same pixel may be above the threshold for some 
mask  positions,  but  below  it  for  others.   This  threshold 
calculation determines the actual bright and surround pixel for 
each position.  The calculation consists of dividing the shape 
sum by the number of pixels in the bright mask and subtracting 
a template specific Bias constant.

BS x,y
u 0

31


v0

31

Bu,vM xu,y vTH x,y (eq. 3)
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S u,vM xu,y vTH x,y (eq. 4)

 
As shown in eq. 3, the pixels under the bright mask that 

are greater  than or  equal to the threshold are counted, and if 
this  count  exceeds  the  minimal  bright  sum  (BSmin)  the 
processing  continues.  Now  in  eq.  4,  the  pixels  under  the 
surround mask that are less than the threshold are counted. If 
this  count  exceeds  the  minimal surround  sum  (SSmin)  it  is 
declared a hit. 

Qx,y
1
2BS x,y

BC


SS x,y

SC  (eq. 5)

 
Once the position of the hit is determined, the quality of 

the  hit is calculated by taking the  average  of  the  percent  of 
bright and surround pixels that were correct as in eq. 5.  This 
quality value is sent  back to  the  driver  with the  position to 
determine two best targets.
4.0 FPGA Implementation

Although it is possible to reconfigure the FPGAs during the run 

 

Term 1 2 3 4 5 6 7 8 9

u 0 0 0 1 1 1 2 2 2

v 0 1 2 0 1 2 0 1 2

SM00= B00M00+ B01M01+ B02M02+ B10M10+ B11M11+ B12M12+ B20M20+ B21M21+ B22M22

SM01= B00M01+ B01M02+ B02M03+ B10M11+ B11M12+ B12M13+ B20M21+ B21M22+ B22M23

SM02= B00M02+ B01M03+ B02M04+ B10M12+ B11M13+ B12M14+ B20M22+ B21M23+ B22M24

SM03= B00M03+ B01M04+ B02M05+ B10M13+ B11M14+ B12M15+ B20M23+ B21M24+ B22M25

Table 1: Expanded shape sum equation with x=0 and y=0 to 3



time, they are not well suited for real-time reconfiguration. This 
is because most FPGAs available today can not reconfigure and 
execute the same time.  Hence, minimizing reconfiguration time 
during computation is essential in effective FPGA use.  Never 
the  less,  when we  use  the  FPGAs as  compute  engines,  the 
hardware can take on a large range of task parameters through 
reconfiguration.

Since  most  of  the  internal  circuitry  is  available to  the 
programmers  as  the  building  blocks,  efficient  designs  can 
configure the device to perform many operations concurrently. 
Such parallel execution of  the device,  limited by the internal 
logic capacity, enables the FPGA to  out-perform the general 
purpose  processor.   Thus,  to  efficiently  use  the  FPGA 
resources, the understanding of the application is important.

4.1 Parallel Execution

The SLD computing tasks represented with the eq. 1, 3, and 4 
need to  compute the image correlation of the sliding template 
masks  with  the  image.   In  order  to  determine  the  design 
strategies, we  examine each equation by applying the algorithm 
on a smaller data set consisting 6 by 6 image, 3 by 3 mask bit 
map and 4 by 4 result matrix.  

For  this data  set,  the shape sum calculation for  a  mask 
requires multiplying all nine mask bits with the corresponding 
image pixels and summing them to find one of sixteen results. 
By  examining  the  expanded  equation  as  in  table  1, some 
important characteristic of the equation is observed.  First, the 
same Buv  is used to calculate the nth term of all the shape sum 
results.   Thus,  when the  summation calculations are  done  in 
parallel, Buv coefficient can be broadcasted to all the units that 
calculate each results.  Second, the image data that is in the nth 

term of the SMxy is in the (n+1)th term of SMxy-1 except when v 
returns to  0; the  image pixel located in the subsequent  row. 
This fact is useful in implementing the pipeline data path for the 
image pixels through the parallel summation units.

Based on the above understanding, parallel computation 
unit as in figure 1 can be designed.  In order not to waste time 
while changing the rows of pixels, the pixels pipeline has the 
capability either to operate as a pipeline or to be directly loaded 
from another set of registers.  At every clock cycle each Uy unit 
performs one operation,  v is incremented modulo 3,  and the 
pixel pipeline shifts by one stage (U1 to U0, U2 to U1, ...). When 
v returns to 0, u is incremented modulo 3, and the pixel pipeline 
is loaded with the entire (u+x)th row of the image.  When u 
returns  to  0,  the  results  are  offloaded  from  the  Uy,  their 

accumulators are cleared, and x is incremented modulo 4. When 
x returns to  0,  this computing task is completed.   The initial 
loading of  the  image pixel pipeline is  from the  image-word 
pipeline that is word wide, hence 4 times faster than the image-
pixel pipeline. This speed advantage guarantees that it will be 
ready with the next image row when u returns to 0.

4.2 Computation Unit

Developing different FPGA logic for eq. 1, 3, and 4 is an 
interesting approach to solving this problem. At the end of each 
stage the FPGA device would be reconfigured with the optimal 
structure for the next task[12].  As appealing as this approach 
may sound,  it  is  not  very practical  since  currently available 
FPGA devices have typical reconfiguration times of hundreds of 
milliseconds during which the FPGA can not be used for the 
computations.   In  addition,  each  specific  set  of  template 
configurations  has  to  be  designed  and  compiled  before  any 
computation  can  occur.   This  process  is  a  time consuming 
procedure which does not allow dynamic sets of templates to be 
immediately used in the  system.  Therefore,  we resisted  this 
approach  to  perform dynamic reconfigurations.   Instead,  we 
designed one structure to perform all three stages as shown in 
figure 2.

As described in the equations, in all three stages there is a 
need  to  bring  in  the  image  pixels  according  to  the  same 
sequence  while broadcasting one  bit  from a  mask.   Then  it 
needs to modify the value of Uy as a function of a certain pixel 
and mask bits.  For the shape sum calculation, the 8-bit pixel 
value M is accumulated into the 16-bit result in Uy only if the 
value of the corresponding mask bit is 1.   Whereas, in bright 
and surround sum, the 8-bit result  Uy is incremented by one 
based on the value of the mask bit as well as the comparison of 
M with the  corresponding threshold value,  THy.   Since THy 

does  not  depend on  u  and v,  it  is a  constant  until the  next 
change  of  x.   These  observations  gave  us  some  hints  to 
revealing a path to common computation steps.

Adding an 8-bit number to a 16-bit number is the same as 
adding  two  8-bit  numbers,  M,  and  the  lower  8-bits  while 
conditionally incrementing  the  higher  8-bits  of  Uy when the 
addition  overflows.   This  suggests  that  each  stage  needs  a 
conditional  8-bit  incrementer  and  an  8-bit  adder  for  either 
adding the pixel M to Uy or for comparing M with THy.  This 
operation is conditionally executed based on the value of the 
mask bit.

Both bright and surround sum evaluate the same condition 

LU

Figure 2: Computation logic for equations 1, 3, and 4
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Figure 1: Systolic image array  pipeline



of comparing M with THy.  The difference is that the bright sum 
is incremented when the overflow is zero while surround sum 
increment when it  is one.   This  suggested  that  the unit  can 
perform both sums at  the same time.  This design choice not 
only introduced  a  concurrency  in the  computation,  but  also 
reduced the required logic in half.  They share the distribution 
of M and THy,  and the 8-bit adder, but each requires its own 
broadcast of the mask bits and its own 8-bit incrementer.

5.0 FPGA nodes

As described in the previous section, there are two tasks that 
the  FPGA processes  for  each image-template  pair.   First,  it 
calculates a shape sum and then it simultaneously calculates the 
bright and surround sums.  However, there are two additional 
computations that  the FPGA nodes must perform.  One is to 
calculate  the thresholds from the shape sums, eq.  2,  and the 
other process is to  calculate the two best matches using the hit 
quality and to report this to the host, eq. 5.

Since these two equations require less iterations of more 
complex  computations,  the  idle  cycles  of  the  LANai  RISC 
processors  are  used  to  compute  them while the  FPGAs are 
working on the summation tasks.

By carefully pipelining each steps of the algorithm, both 
processors of the FPGA node are used concurrently to complete 
the SLD task.

5.1 Scalable system

Myricom  LANai  processor  is  responsible  for  the  network 
processes of the FPGA nodes.  Therefore, the FPGA nodes can 
easily become part of any Myrinet network.  Myrinet offers high 
bandwidth  interconnection  in  a  highly  scalable,  switched 
network.   Within such  framework,  one  can  build myriad of 
network topologies consisting of FPGA nodes.

Topology on figure 3a can have  each FPGA node work 
independently from other  nodes  to  find matches.  Each  node 
contains a complete set  of templates. The host  will give each 
node a match task and the node will find the best two matches 
and return the answer to  the host.   This architecture  is fault 
tolerant with respect to node failures; if the host does not hear 
from a node it can easily resend the match task to another node, 
and continue to find matches with the remaining nodes.  In such 
topology, tasks can be immediately assigned to each nodes upon 
the completion of previous task.  Thus, each nodes are highly 
utilized.

When the template set is very large, each node may not be 
able to store all the templates.  Also, if the number of nodes in 

the  system is  quite  large,  the  first  topology  demands  more 
bookkeeping processing on the host.  This can cause the host 
system to become the bottleneck of the system.  Figure 3b is an 
example  of  a  data  flow  topology  where the  task  can  be 
partitioned by distributing the templates over the nodes which 
are arranged in a  chain. Images and their current best matches 
are passed down the chain from node to  node as each node 
finishes matching an image against  the  node’s  subset  of  the 
templates. The two best matches so far are passed along with 
the  image  and  then  returned  to  the  host  by  the  last  node. 
However,  unlike the first topology, when one node or  link is 
lost or becomes faulty, the nodes must re-route the match tasks, 
redistribute the templates of the "lost" node before continuing 
the tasks.  Dynamic load balancing is also not optimal because, 
even if the same number of templates have to  be matched by 
each node, the amount of work that each node has to do varies, 
and a node that  is momentarily overwhelmed may create  idle 
nodes downstream.

Another  topology  can  be  built  by  combining  the  two 
discussed above as shown in figure 3c.  Such hybrid approach 
would include the best of both architectures and allow users to 
customize  their  system to  fit  their  needs.   Such  system are 
highly scalable as well as fault tolerant.

6.0 Results

The test  and measurement setup is as shown in the figure 4. 
The host  is a  SparcStation IPX running SunOS 4.1.3  with a 
Myrinet interface board with 512K memory.  The FPGA node, 
consisting  of  Lucent  technologies  ORCA  FPGA  40K  and 
Myricom LANai 4.1 running in 3.3V at 40 MHz, communicate 
with the host through a 8-port Myrinet switch.

Without  additional  optimization,  our  implementation  of 
the complete ATR algorithm on one FPGA node processes over 
900 templates per second.  Each template requires about 450 
thousand  iterations  of  1-bit  conditional  accumulate  for  the 
complete shape sum calculation.  Then the threshold calculation 
require one division followed by subtraction.  The bright and 
surround  sum  compares  all  the  image  pixels  against  the 
threshold results.  Then 1-bit conditional accumulate is executed 
for each sums.  Then the quality values need to be calculated 
using two divides, add, and a multiply.

Given  1-bit  conditional  accumulate,  subtract,  divide, 
multiply, and 8-bit compare are one operation each, the total 
number of 8-bit operations to  process one 32 by 32 template 
over a 64 by 64 image is approximately 3.1 million operations. 
This indicates that  the FPGA node successfully runs over 2.8 
billion  8-bit  operations  per  second  (Giga  operations  per 

Figure 4: Performance test configuration
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second/GOPS).
After  the  simulations,  we  found  that  sparseness  of  the 

actual  templates  reduced  the  average  valid  rows  of  the 
templates to  be approximately one half of the number of the 
total  template  row.   When  we  took  advantage  of  this 
observation in the FPGA design, the performance increased to 
approximately 4.0 GOPS.   Further  simulations revealed more 
room for improvements, such as dividing the shape sum within 
the  FPGA, transposing narrow  template  masks,  and skipping 
invalid threshold lines.  Although these optimizations were not 
implemented into the FPGA design, the simulation indicated an 
average  of   7.75  GOPS  of  performance  with  all  the 
optimization.

7.0 Conclusion

The correlations are mapped to a linear systolic pipeline. A high 
degree of parallelism is exploited. In addition to computing an 
entire row of correlation results in parallel, the FPGA performs 
the  address  calculations,  data  loading,  and  correlation  in 
parallel. Short  inter-register  paths  allow the  design to  run at 
40MHz,  which is limited by the clock rate  at  which external 
memory can be fetched.

In this paper we have described a scalable, reconfigurable 
system under  the  two-level  multicomputer  architecture.  This 
system  is  scalable  by  using  an  embedded  high-performance 
networking  technology  (Myrinet)  that  has  programmable 
network  interfaces.  These  network  interfaces  contain 
microprocessors for local control of the FPGA. 

We have demonstrated  a  scalable FPGA system for  an 
automatic target  recognition application. For this  application 
we  have  measured  4  GOPS  in  performance.   Such 
measurements were about  ten times faster  than the system in 
use  at  that  time as  well as  about  four  times faster  than the 
algorithm running on the PowerPC based multicomputer; which 
was developed during the same period[1].

Further analysis suggested  that the performance may be 
double with additional optimizations, yielding up to 500 GOPS 
per  VME-6U  sub-rack  with  16  baseboards  each  with  four 
FPGA nodes.  More importantly this performance scales linearly 
with the number of nodes due to the modularity of each node 
and the scalability of the message passing network.  The only 
limit to  its scalability is the ability of the host to  dispatch and 
handle matching tasks.

The  above  results  were  measured  using  the  FPGAs 
available during 1996.  Due to the nature of the algorithm, the 
performance  can  scale  linearly  within  the  FPGA  design  by 

simply adding more computation units to take advantage of the 
parallelism.  With increasing speed  and logic areas  in FPGA 
technology today, such improvement is unpredictably large.
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