
HIGH SPEED DOCUMENT CLUSTERING IN RECONFIGURABLE HARDWARE

G. Adam Covington, Charles L.G. Comstock, Andrew A. Levine, John W. Lockwood, Young H. Cho

Applied Research Laboratory, Washington University One Brookings Drive, Campus Box 1045
St. Louis, MO 63130-4899 USA

{gac1, aal1, lockwood, young}@arl.wustl.edu, cc1@cse.wustl.edu
http://www.arl.wustl.edu/projects/fpx/reconfig.htm

ABSTRACT
High-performance document clustering systems enable

similar documents to automatically self-organize into groups.
In the past, the large amount of computational time needed
to cluster documents prevented practical use of such sys-
tems with a large number of documents. A full hardware
implementation of K-means clustering has been designed
and implemented in reconfigurable hardware that clusters
512k documents rapidly. This implementation, uses a co-
sine distance metric to cluster document vectors that each
have 4000 dimensions. The system was synthesized on a
Xilinx XC4VLX200 with a clock frequency of 250 MHz.
With this FPGA the hardware accelerated algorithm runs up
to 328 times faster than the software version running on an
Intel 3.6 GHz Xeon. Experiments were also performed us-
ing the Field Programmable Port Extender (FPX) platform.
It is shown that a fully pipelined architecture running on a
Xilinx XCV2000E-8 FPGA (with a clock frequency of 80
Mhz) can outperform software implementations running on
an Intel 3.60 GHz PC by a factor of twenty-six.

1. INTRODUCTION

As the amount of information generated from worldwide
sources increases, humans can no longer keep up with the
task of reading and categorizing the data. To organize data,
a document clustering system can be utilized to automati-
cally group related content together. To cluster high dimen-
sional vectors, microprocessor systems inefficiently perform
comparisons sequentially. The algorithms used for cluster-
ing have large amounts of computations that can be run in
parallel. These parallel algorithms can be implemented in
hardware to achieve high performance. Field Programmable
Gate Arrays (FPGAs) can be utilized to implement cluster-
ing algorithms at high speeds. FPGAs also allow parameters

This research was sponsored by the Air Force Research Laboratory,
Air Force Materiel Command, USAF, under Contract Number MDA972-
03-9-0001. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of AFRL or the U.S.
Government.

of the clustering algorithms to be modified through repro-
gramming. Application Specific Integrated Circuits (ASIC)
would also allow algorithmic speedup, however they lack
the ability to be re-optimized for the parameters of an al-
gorithm. In this paper, we demonstrate a complete system
that uses K-means clustering to automatically group related
documents together that is implemented in hardware using
FPGAs.

1.1. Related Work

Duda and Hart [1] described the original K-means algorithm.
Estlick et. al.[2] and Leeser et. al.[3] have used K-means
with the Minkowski distance metricL1 to cluster hyper-
spectral images using a hybrid software, hardware approach.
They compared the use of different Minkowski distance met-
rics, Manhatten Distance (L1), Euclidean Distance (L2) and
Max Distance (L∞), but determined thatL1 was the one
that would fit best for their hardware. However, these dis-
tance metrics are not well suited for clustering sparse, high
dimensional data.

For clustering documents with high dimensionality, the
cosine theta distance metric is preferred. The cosine theta
distance or spherical distance intuitively provides better dis-
tance in high dimensions than euclidian distance.

2. K-MEANS CLUSTERING OF DOCUMENTS

2.1. Concept

Given a set ofN documents,D, where each document~d
is described byL dimensions or bins. Each bin counts the
frequency of words and similar words map to the same bin.
Documents are partitioned intoK clusters by minimizing
the distance between each document and the cluster cen-
troid. The “centroid” of a cluster, is the mean of all doc-
uments in a cluster. This is an approximate representation
of all documents in that cluster. Figure 1 shows three doc-
uments being mapped into document vectors. These docu-
ment vectors and their assignments are then used to calculate
the cluster centroids.

 Concept Space

Spain

Animals

1 0 0 1

Dogs chase balls Cats chase mice Madrid, SpainDocuments

Document Vectors

Concepts

1 0 1 1 0 2 0 01 0 0

1 0 .5 1 .5

0 2 0 0 0

Fig. 1. Documents mapped intoL dimensional vectors are clustered into groups of related concepts

2.2. Algorithm

In our case, K-means will minimize the cosine distance be-
tween each documentd ∈ D and the cluster centroidCk for
which it is assigned.

K∑

k=1

∑

d∈Ck

~d · ~Ck

|~d| · | ~Ck|
The K-means algorithm operates as follows:

1. Assign document vectors to a cluster using an initial
seed.

2. Initialize cluster centroids from initial document as-
signments.

3. For each documentd ∈ D

(a) Recalculate distances from document~d to cen-
troids, and find the closest centroidCmin.

(b) Move document~d from current clusterCk into
new clusterCmin and recalculate the centroid
for Ck andCmin.

4. Repeat step 3 until either the maximum epoch limit
is reached or an epoch passes in which no changes
in document assignments are made. An epoch is a
complete pass through all documents.

For this implementation of K-means the initial seed clus-
ters were generated by randomly assigning documents to
starting clusters. K-means is commonly calculated using
double precision arithmetic, however for a hardware imple-
mentation, reduced precision integer representations were
utilized to increase the speed of the circuit and to fit the de-
sign into the available space on an FPGA. Effects of limited
precision arithmetic on document classification accuracy are
shown in Section 4.3.

2.2.1. Centroid Update

Cluster centroids are initialized by averaging across all of
the document vectors in each cluster. For recalculating the
centroids after a document update, we add or subtract the
document vector from the unscaled centroid dimension
~Cunscaled and then average the centroid into the scaled cen-
troid dimension~Cscaled for distance comparison. The aver-
age is not necessarily calculated by dividing by the absolute
number of documents in the clusterCcount, but by a scaled
approximation of it.

~Cscaled =
~Cunscaled

Ccount

However in order to do this calculation in integer arith-
metic it is necessary to rescale the centroid and the document
count. In our implementation we use the following equation.

~Cscaled = min

(
255,

2 · ~Cunscaled

min(Ccount/16, 1)

)
(1)

We use of the minimum function to avoid divide by zero
from under scaled document counts, as well as ensuring that
the final scaled value fits within the 8 bits allocated per cen-
troid dimension.

2.2.2. Cosine Theta Distance Metric

In order to find the distance between a document and a cen-
troid and thus the closest centroid to a document, the cosine
theta distance metric is used. The Cosine Distance metric is
defined as follows. Given a document vector~D, and a cen-
troid vector ~C, the spherical distance between~D and ~C is
defined as:

cos(θ) =
~D · ~C

| ~D| · | ~C|
(2)

Cosine theta distanceD is rangedD ∈ [0, 1]. However,
in order to represent the cosine distance as integers it was
necessary to scale cosine theta into a larger range to approx-
imate fixed point arithmetic.

The integer representation of the equation:

cos(θ) =
16

(
16(~D·~C)

|~C|

)

| ~D|
(3)

To allow for further speedup by reducing the number of
divisions necessary1:

cos(θ) =
16(~D · ~C)

min((|~C| · | ~D|)/16, 1)
(4)

The constant multiple of 16 was chosen to rescale the
range of distances intoD ∈ [0, 255]. Some experimentation
was done with different constants, however these were found
to work well for the experimental test sets given the centroid
scaling used.

2.3. Hardware

The K-means hardware implementation was designed to ex-
tend a content classification system [4]. This classification
system uses a number of methods from Latent Semantic
Analysis (LSA) to map text into a reduced feature space.
The mapping of words to features in the 4000 dimensions
is done via a mechanism called the Word Mapping Table
(WMT). Words are changed into 20-bit memory locations
via a hash. For example:

HASH(“MADRID”) = 0x2c563 (101,603)

Output of the hash represents an index in 1MB of SRAM.
Values stored in the memory locations are indexes in the
4000 dimension feature vector. When retrieved, these val-
ues enable an increment of a counter for the specific feature.
The counter bins of the feature vector saturate at 15.

WMTs are produced from different LSA algorithms [5].
The goal of the algorithms is to produce a feature space
that promotes uniqueness for concepts. Each method maps
words to individual bins. Words such asCAT and CATS
could both point to the same bin in the 4000 dimension if
the algorithm determined that grouping the similar words
was effective. The traditional method of stemming would
definitely group the two words together while Information
Theory might find a different information contribution be-
tween the two words and thus might separate the two into
different bins. The document vectors from the content clas-
sification system are well suited for an unsupervised learn-
ing environment.

1The bottom division can be implemented as a bit shift instead of a
divide.

Fig. 2. The FPX platform used to implement K-means Clus-
tering

3. IMPLEMENTATION

3.1. Design Platform

To demonstrate clustering in hardware we synthesized a cir-
cuit using VHDL-specified modules. These modules were
then used to implement logic for the VirtexE FPGA on the
Field Programmable Port Extender (FPX). The FPX plat-
form is an open hardware platform that allows hardware de-
signers to rapidly prototype circuits using VHDL modules
[6].

The FPX platform can read documents sent to it directly
over the Internet or an Intranet [7]. Wrapper modules sepa-
rate the application data from the network protocol [8]. Data
is sent to circuits in flows carried as a sequence of TCP/IP
packets. Modules on the FPX platform receive data through
TCP/IP packets [9]. For the K-means clustering hardware,
both document vectors and the initial concept vectors (clus-
ter centroids) can be loaded into the FPGA by using UDP/IP
packets.

The FPX platform when equipped with two banks of
512MB SDRAM, can cluster 512,000 items (217). Each
record of 2048 bytes (211) represents an item consisting of
the 4000 element 4-bit vector and metadata about the flow.
Identifiers and static information, such as the sum of squares
of the feature vector, are put into the last 48 bytes.

3.2. Hardware/Software Communications

In order to communicate with the hardware implementation
running in an FPX, an interface program was created. This
program is used to send data to the hardware and issue a
command to start clustering. This program reads the 4000
element document vectors and randomly assigns the docu-
ments to initial clusters. The sum of squares for the doc-
ument vectors are then computed. The random document

assignments are used to calculate the starting concept vec-
tors, the sum of squares and the number of documents con-
tained in each cluster. The document vectors and there clus-
ter assignments are then packed into UDP packets and sent
to hardware. The initial concept vector data is packed into
UDP packets and sent to the hardware. The document vec-
tors are next loaded into hardware, then the command to
start clustering is sent.

After the clustering is started, the results of the cluster-
ing are transferred from hardware to software. A program
was created that receives the document assignments from
each epoch that are sent from hardware. The output at each
epoch notifies changes in document assignments. When the
algorithm converges or passes the epoch limit, the final doc-
ument assignments are sent. This information is then for-
matted into XML files and stored on a network-attached PC.

3.3. Hardware Architecture

The K-means clustering algorithm is comprised of three main
operations. These operations are: (1) calculating the dis-
tances, (2) identifying the correct cluster assignments, and
(3) updating the clusters. In order to implement the algo-
rithm in hardware, three main modules were created: Co-
sine Distance, Greedy Accept, and Update. In addition to
these modules, control modules were needed to load and run
the hardware clustering system. A diagram of the K-means
clustering hardware is shown in Figure 3. Document vectors
are stored in off-chip SDRAM. The 28-bit concept vectors
are stored in off-chip SRAM. The reduced 8-bit concept vec-
tors are stored on the FPGA using on-chip BlockRAMs.

Cosine
Distance

Update

K-means
Control

Greedy Accept

SDRAM Controller SRAM Controller

Report
Control

Processor

On-chip Memory
storing

8-bit Concept Vectors

SDRAM storing
Document Vectors

SRAM storing
28-bit Concept

Vectors

Fig. 3. Hardware Clustering Block Diagram

3.3.1. Cosine Distance Module

The cosine distance module is replicated for each cluster that
is stored on the FPGA. This allows all the cosine distances
of one document vector to each centroid in the FPGA to
be calculated in parallel. This module contains all the cir-
cuitry required to calculate a cosine distance. This circuitry
consists of two square roots, dot product, and a division.
This circuitry can produce a cosine distance every 294 cy-
cles (3.675µs when running at 80 Mhz). The square root
function was created using the Xilinx core generator.

In addition to the distance metric circuitry the module
also stores all the information related to the concept vector.
The concept vectors are stored in on-chip memory on the
FPGA. The sum of squares for the concept vector and the
number of documents in the cluster are also stored within
the module. These values are all used in the calculation of
the cosine distance and are also available for other modules
such as the update module.

3.3.2. Greedy Accept

After calculating the cosine distances (in parallel) a deci-
sion is made to determine if the document vector should be
assigned to a different cluster. Since K-means is a greedy
algorithm the best distance is chosen as the new document
assignment. This module compares all the cosine distances
that are calculated and chooses the best assignment. If the
best distance (the closest one to the true cosine theta calcu-
lation) is held by two or more concept vectors the concept
vector with the smallest index value is chosen.

3.3.3. Update

As the document vector is streamed into the cosine distance
module, the update module caches the entire vector. While
caching the document vector the update module looks at
each 4-bit element and creates a zero-flag indicating whether
or not the element is zero. This flag allows the update mod-
ule to identify only the non-zero document elements and up-
date only the corresponding concept elements. This is useful
when the document vectors are sparse.

The module uses the extended 28-bit concept vector val-
ues stored in SRAM to recalculate both the 28-bit and the
truncated 8-bit concept vectors. The extended vector val-
ues are necessary in the update procedure to avoid a cascad-
ing precision error. If the truncated 8-bit values were used,
the process of expanding the 8-bit value into a 28-bit value
would produce a value that would be significantly different
from the true 28-bit value. This different 28-bit value would
not allow the K-means algorithm to converge.

3.3.4. Load Processor

The load processor receives the data from the UDP packets
that are sent to the hardware. It then identifies whether the
data within the packets represents a document vector, 8-bit
concept vector, 28-bit concept vector or a control packet.
The module then loads all the document vectors into the
FPX’s SDRAM. The 28-bit concept vectors are loaded into
the SRAM banks. The 8-bit concept vectors are sent to the
relevant cosine distance module for storage. When the con-
trol packet is sent the load processor starts the clustering by
signaling the K-means controller.

3.3.5. K-means Control

The heart of the K-means algorithm is contained in the K-
means controller. This controller handles all the accesses to
document vectors. It starts the cosine distance calculations
and depending on information it receives from the greedy
accept module it reads another document vector or starts the
update procedure for the current document. This controller
is designed to output the document assignments after every
epoch. It also maintains all the necessary information to
determine if the clustering has reached convergence.

3.3.6. Report

The report module is use to send information from the clus-
tering hardware to a computer for analysis. This module
buffers the document identifiers and the assignments for each
of the documents and sends the information out of the hard-
ware. The module is controlled by the K-means controller.

4. RESULTS

4.1. Software Simulation and Performance

Software programs were created to simulate multiple varia-
tions on the K-means algorithm. These variations were nec-
essary to test convergence properties and accuracy. Changes
included several reduced precision representations, square
root versions, and different variations on the cosine distance
metric. Most importantly these programs allowed for com-
parisons between double and integer representations. Based
on the simulation results, a hardware implementation was
created that utilized 8-bit resolution for the concept vector
elements and 4-bit resolution for the document vector ele-
ments.

Performance of the K-means software implementations
and the hardware implementation can be seen in Figure 4.
This shows the average time required for the software to cal-
culate the distances from one document to all concept vec-
tors. As the number of concept vectors increases the aver-
age time required to calculate the distances increases. This
is due to the fact that software is written to run sequentially.

3.68
3.68

3.68

175.37

386.08

100.93

187.84

433.55

234.98

429.53

952.59

95.36

-150

50

250

450

650

850

1050

4 10 25

 Number of Clusters, K

R
u

n
n

in
g

 T
im

e
(u

s)

hardware

char

int

double

Representation

Fig. 4. Average time for each software implementation and
the hardware implementation comparing one document to
all K concepts.

0

50

100

150

200

250

300

350

400

450

50 70 90 110 13
0

150 170 19
0

210 230 25
0

270 290

Clock Speed (MHz)

H
ar

dw
ar

e
S

pe
ed

up

K = 4

K = 10

K = 25

Fig. 5. Hardware speedup in comparison to the character
implementation in software as clock frequency increases

4.2. Hardware Implementation Results

The hardware is able to calculate all the distances from a
document vector in 3.675µs when running at 80 MHz. As
the clock speed of the circuit is increased the amount of time
required to calculate all the distances decreases. The hard-
ware clustering system running at 250 Mhz would require
1.176µs to produce all the cosine distances. Since all the
distances are calculated simultaneously, the timing would
not change when the number of concept vectors increase.
Given a hardware implementation that runs in 95.36µs with
four clusters and clustering hardware running at 80 MHz,
the hardware is 25.95 times faster. As more clusters are
added and the hardware clock speed is increased the speed
gain of the hardware increases (Figure 5). When the clus-
tering system is implemented on the Virtex4 LX200 FPGA

XCV2000E Utilization XC4VLX200 Utilization
Resources Utilization Percentage Utilization Percentage

Slices 17654 / 19200 91% 19674 / 89088 22%
4-input LUTS 16434 / 38400 42% 19355 / 178176 10%

Flip Flops 29685 / 38400 77% 30048 / 178176 16%
Block RAMs 65 / 160 40% 50 / 336 14%

Table 1. Device utilization for Hardware K-means with four concepts across different platforms

using a clock frequency of 250 MHz, the hardware is 329
times faster then software.

The current hardware implementation is highly paral-
lel. The cosine distance metric is replicated with every con-
cept vector stored within on-chip memory. This means the
number of clusters is limited by the on-chip memory and
the resource utilization of the distance metric. The Xilinx
XCV2000E can support up to fifteen concepts in the on-chip
memory. The resource constraint of the clustering hardware
for this FPGA are the logic slices. The current system can
only contain four distance metrics per VirtexE 2000.

The same hardware design can support up to 25 when
implemented on a Xilinx Virtex4 LX200. This Xilinx FPGA
has an increased number of logic slices in addition to an in-
creased number (and size) of on-chip memory. The cluster-
ing hardware will also experience an increase in the clock
frequency when implemented in this FPGA. Table 1 shows
the amount of resources utilized when implementing the cir-
cuit for four concepts. These constraints allow the Xilinx
VirtexE 2000 to support a maximum of four concepts and
the Xilinx Virtex4 LX200 to support a maximum of 25.

4.3. Analysis

Utilizing the software implementations, experiments were
run on a subset of the CMU 20 Newsgroup Corpus [10].
The CMU corpus is a group of newsgroup postings from 20
different news groups. The subset was determined by strip-
ping the first 2 lines of each file which are the “From:” and
“Subject:” lines. Next, the files with less than 100 words
were removed. The number of concepts,K was set to 4,
10, and 25. One hundred cluster seeds were generated for
each size. Table 2 shows the degree to which each algo-
rithm variation changes the output cluster from a common
cluster seed. This allows the comparison of current hard-
ware and future hardware against software implementations
running on an Intel 3.60 GHz PC. The software implemen-
tations included a double, integer and char representations
of concept vectors. Both the 8-bit character and the 16-
bit integer versions were tested using both versions of the
cosine-theta distance metric. The first distance metric tested
is shown in Equation 3. The second is shown in Equation
4. The different versions had no effect on the double rep-
resentations due to increased precision. The 8-bit character

Type & VI Distance
K Cosine Version Bits Average Std. Deviation

char(0) 8 3.016 0.0914
char(1) 8 2.991 0.0895

4 integer(0) 16 3.016 0.0914
integer(1) 16 2.991 0.0895

double 32 2.940 0.0675
start seed - 4.363 0.0008

char(0) 8 2.957 0.1467
char(1) 8 2.974 0.0881

10 integer(0) 16 2.984 0.0894
integer(1) 16 2.974 0.0881

double 32 2.851 0.0792
start seed - 5.270 0.0015

char(0) 8 3.579 0.1007
char(1) 8 3.573 0.0992

25 integer(0) 16 3.579 0.1010
integer(1) 16 3.574 0.0976

double 32 3.514 0.1005
start seed - 6.164 0.0022

Table 2. Variation of Information distance metric showing
distance to ground truth for K-Means with varying precision
and cosine distance metrics

representation using Equation 4 is a simulation of the actual
hardware.

To compare the different clustering algorithms, Meilǎ’s
Variation of Information [11] metric was used to measure
the distance between two clusterings. This is a log scale
metric intended to approximate the distance between two
clusters. The approximation is of the distance across the
lattice of possible clusterings for a set of data points. Lower
values indicate closer clusterings. In this case the distance is
between a clustering and the ground truth clustering of the
CMU 20 newsgroups. Seed denotes statistics for the initial
random clusters. These seeds were then run through each of
the K-means versions. They are provided to show a baseline
of how much each clustering improved, and to give an idea
of scale for interpreting these numbers.

Note that in Table 2, for low values ofK, such as 4, re-
sulted in the same set of clusterings as the 8-bit character

representation. This occurred despite the slight extra pre-
cision in the integer version. The additional precision dou-
ble representations give always result in a clustering that is
closer to ground truth. From this table it is safe to conclude
that while there is some difference between the double rep-
resentation and the hardware version of the algorithm, it is
a relatively minor difference. It is particularly minor in this
application, given the speed gain from hardware as shown in
Section 4.1.

5. CONCLUSION

A high speed, parallel K-means algorithm has been synthe-
sised for both a Xilinx Virtex4 LX200 and a Xilinx VirtexE
2000. The circuit was implemented with the Xilinx VirtexE
2000 on the FPX platform. Document vectors with 4000-
dimensions and 4-bit precision were clustered with centroids
at 8-bit precision. The hardware circuit implemented on the
Xilinx VirtexE 2000 clustered four concepts at once. The
same implementation on a Xilinx Virtev4 LX200 can clus-
ter 25 concepts at once. The implementation uses more
hardware to achieve higher rates of clustering than can be
obtained using software algorithms. By scaling values to
control numeric precision, we show that the system can find
a clustering comparable to a clustering found when using a
full floating point software implementation. We also show
that by utilizing parallel hardware, the speed of hardware
clustering is substantially greater than software. This de-
sign of clustering in hardware maintains its speed gains as
the number of concepts increases. Thus, it has been shown
that software implementations running on an Intel 3.60 GHz
XEON PC is outperformed by a fully pipelined architecture
running on a Xilinx XCV2000E-8 FPGA (with a clock fre-
quency of 80 Mhz) at a factor of twenty-six.

6. FUTURE WORK

K-means will converge to a local maximum, however it is
not guaranteed to converge to a global maximum. Through
modifications of the K-means algorithm, such as the use of
simulated annealing, it is possible to increase the chances
for the algorithm to find the global maximum. Simulated
annealing gives the algorithm the chance to jump out of lo-
cal maximum by probabilistically accepting poor document
assignments in the early stages of the algorithm. In later
stages the chances of these jumps are reduced, allowing the
algorithm to converge to a better local maximum.

7. REFERENCES

[1] Pattern Classification and Scene Analysis. John Wiley and
Sons, Mar. 1973.

[2] M. Estlick, M. Leeser, J. Theiler, and J. J. Szyman-
ski, “Algorithmic transformations in the implementation

of k- means clustering on reconfigurable hardware,” in
FPGA, 2001, pp. 103–110. [Online]. Available: cite-
seer.ist.psu.edu/estlick01algorithmic.html

[3] M. Leeser, J. Theiler, M. Estlick, N. Kitaryeva, and
J. Szymanski, “Effect of data truncation in an implementation
of pixel clustering on a custom computing machine,” 2000.
[Online]. Available: citeseer.ist.psu.edu/leeser00effect.html

[4] J. Lockwood, S. G. Eick, D. J. Weishar, R. Loui, J. Moscola,
C. Kastner, A. Levine, and M. Attig, “Transformation algo-
rithms for data streams,” inIEEE Aerospace Conference, Big
Sky, Montana, Mar. 2005.

[5] “Hardware accelerated algorithms for semantic processing of
document streams,” inIEEE Aerospace Conference, Big Sky,
Montana, Mar. 2007.

[6] J. W. Lockwood, “An open platform for development of net-
work processing modules in reprogrammable hardware,” in
IEC DesignCon’01, Santa Clara, CA, Jan. 2001, pp. WB–19.

[7] J. Lockwood, J. Turner, and D. Taylor, “Field Programmable
Port Extender (FPX) for Distributed Routing and Queuing,”
in ACM International Symposium on Field Programmable
Gate Arrays (FPGA), Monterey, CA, Feb. 2000, pp. 137–144.

[8] F. Braun, J. Lockwood, and M. Waldvogel, “Layered Pro-
tocol Wrappers for Internet Packet Processing in Reconfig-
urable Hardware,”IEEE Micro, vol. Volume 22, no. Number
3, pp. 66–74, Feb. 2002.

[9] D. Schuehler and J. Lockwood, “A Modular System for
FPGA-based TCP Flow Processing in High-Speed Net-
works,” in 14th International Conference on Field Program-
mable Logic and Applications (FPL), Antwerp, Belgium,
Aug. 2004, pp. 301–310.

[10] (2005) 20 newsgroups. [Online]. Available:
http://people.csail.mit.edu/jrennie/20Newsgroups/

[11] M. Meilǎ, “Comparing clustering - an axiomatic view,”
in Proceedings of the 22nd International Conference
on Machine Learning, Bonn, Germany, 2005. [Online].
Available: www.stat.washington.edu/mmp/Papers/icml05-
compare-axiom.pdf

