
An Adapative Frequency Control Method using

Thermal Feedback for Reconfigurable Hardware

Applications

Phillip H. Jones #1, Young H. Cho #2, John W. Lockwood #3

Applied Research Laboratory

Washington University

St. Louis, MO, USA
1
phjones@arl.wustl.edu

2
younghc@gmail.com

3
lockwood@arl.wustl.edu

Abstract— Reconfigurable circuits running in Field Pro-
grammable Gate Arrays (FPGAs) can be dynamically optimized
for power based on computational requirements and thermal
conditions of the environment. In the past, FPGA circuits were
typically small and operated at a low frequency. Few users were
concerned about high-power consumption and the heat generated
by FPGA devices. The current generation of FPGAs, however, use
extensive pipelining techniques to achieve high data processing
rates and dense layouts that can generate significant amounts of
heat. FPGA circuits can be synthesized that can generate more
heat than the package can dissipate. For FPGAs that operate
in controlled environments, heatsinks and fans can be mounted
to the device to extract heat from the device. When FPGA
devices do not operate in a controlled environment, however,
changes to ambient temperature due to factors such as the failure
of a fan or a reconfiguration of bitfile running on the device
can drastically change the operating conditions. A protection
mechanism is needed to ensure the proper operation of the FPGA
circuits when such a change occurs. To address these issues, we
have devised a reconfigurable temperature monitoring system
that gives feedback to the FPGA circuit using the measured
junction temperature of the device. Using this feedback, we
designed a novel dual frequency switching system that allows the
FPGA circuits to maintain the highest level of performance for a
given maximum junction temperature. Our working system has
been implemented and deployed on the Field Programmable Port
Extender (FPX) platform at Washington University in St. Louis.
Our experimental results with a scalable image correlation circuit
show up to a 2.4x factor increase in performance as compared
to a system without thermal feedback. Our circuit ensures that
the device performs the maximum required computation while
always operating within a safe temperature range.

I. INTRODUCTION

Many applications are exposed to multiple thermal condi-

tions during their operational lifetime. Mobile systems, such

as military and space applications, require high performance

computation in embedded systems that move rapidly between

different environments. Stationary systems, such as outdoor

surveillance systems, must adapt to variable ambient tempera-

tures. Even systems that operate in tightly controlled environ-

ments, such as rack-mounted FPGA computational blades in

a machine room, must adapt to variable thermal environments

so that they will not completely fail due to a fault in a fan or

obstruction of air flow. In general, all reconfigurable devices

can find themselves exposed to conditions much different then

their typical operating conditions. In these cases, it is desirable

to allow the circuit to adapt to the environment.

Most existing FPGA circuits operate at a fixed operating

frequency. At this frequency, the heat dissipation mechanisms

are built to handle worst-case operating conditions. When there

is a significant gap between the worst-case operating condition

and the typical operating condition, the system must be over-

engineered and/or the performance realized by the system

may be significantly less than optimal during typical operating

conditions.

This work presents an adaptive frequency control method

that uses thermal feedback to adjust the operating speed of

a reconfigurable system. We quantify how much computation

performance can be gained by using this method instead of

operating the device only at a fixed frequency.

A. Motivation

While testing high performance circuits on the FPX devel-

opment platform, we experienced an incident that overheated

an FPGA [1]. Given unfavorable environmental conditions,

an FPX platform was damaged because the bitfile generated

more heat than the package could dissipate given the amount

of airflow available in an open chassis. In order to prevent

such an event from occurring in the future, we designed a

temperature monitoring circuit that runs on another FPGA

on the FPX platform that acts like a thermal circuit breaker

[1]. The FPX platform now provides a mechanism to monitor

the temperature of the reconfigurable device over the network

and provides a mechanism which can dynamically adjust the

operation of the reconfigurable logic device.

During our characterization of the FPGA thermal behavior,

we discovered that we had an opportunity to make use of the

relatively fast measurements of junction temperature changes

verses the relatively slow rate of change of temperature of

the system due to thermal mass of the package and heatsink.

A relatively large amount of time is available to operate a

circuit at a high frequency while the package slowly warms as



compared to the period at which the FPX platform performs

computation on data packets. Seeing this as an opportunity

to improve the performance of our reconfigurable hardware

platform in transient conditions, we devise a novel scheme

that dynamically adjusts the operation of the reconfigurable

logic device between two clock frequencies using temperature

thresholds. This mechanism generates a thermally-adaptive

frequency that maximizes the computational throughput for

a specified maximum application temperature which we refer

to in this paper as the application’s thermal budget. As stated

previously, there are several types of applications that benefit

from using dynamic adjustment of frequency as compared to

a fixed operating frequency.

B. Contribution

In the following section, we discuss related academic work

and industry solutions related to thermal management. Section

III gives a summary of the previous work that we used

to build upon in this paper. The two main contributions of

the previous work was (1) the implementation of a thermal

shutdown circuit for applications implemented on FPGAs, and

(2) a systematic approach for thermal profiling reconfigurable

hardware. The contributions of this paper are detailed in

Sections IV and V. In Section IV a novel implementation

for temperature driven frequency control of reconfigurable

hardware is described. In Section V, we quantify the results

of the circuit implemented for a case study of a a high-power

image-correlation application.

II. RELATED WORK

Research on Dynamic Thermal Management (DTM) sys-

tems is related to this work. Microprocessors have been

built that allow their voltage and frequency to be scaled to

extend battery life of mobile computers. Companies like Intel

and AMD extend this concept to manage heat dissipation

on servers [2]. By introducing power management features,

software running on the CPU can scale voltage and frequency

to lower power usage before the device overheats. Such

technology is critical for servers located in large data centers

that house hundreds or thousands of computation nodes.

Low-power embedded processors like Xscale [3] have hooks

that allow voltage and frequency scaling to increase power and

thermal efficiency. Work presented by [4] makes use of these

features to present a dynamic thermal management (DTM)

system that would scale the processor frequency in response

to temperature readings from an external thermal-couple.

The Advanced Configuration and Power Interface (ACPI)

standard codeveloped by Hewlett-Packard, Intel, Microsoft,

Phoenix, and Toshiba, defines an interface for software to per-

form power management on devices within a system [5]. ACPI

targets systems that have an OS or significant management

firmware, not reconfigurable applications that run using little

or no software.

There has also been work for FPGAs that use feedback

to implement DTM mechanisms. In [6] a dynamic voltage

scaling (DVS) mechanism was presented that used gate delay

feedback to minimize the voltage supplied to internal FPGA

logic.

Typically DTM strategies are implemented for the purpose

of conserving power. In the case of mobile computers this

extends the battery life. For servers in data centers, lower

power consumption saves energy and provides a lower cost of

ownership for the system. When excessive heat is produced,

systems with temperature-controlled fans increase the airflow

to cool the device. The work presented in this paper looks at

DTM from a different point of view. The goal of our approach

is to run reconfigurable circuits so as to achieve maximum

possible performance for a given temperature. Our approach

adapts the frequency of the application to maintain a specified

temperature even as the ambient environment changes.

III. RECONFIGURABLE HARDWARE TEMPERATURE

MONITOR

We start this section with an overview of the development

platform used for this work. We then summarize our previous

work on which this work is built upon.

A. Development Platform

MAX1618 Temperature sensor

RAD NID

MAX1618 Temperature sensor

RAD NID

Fig. 1. FPX Development Platform

The circuits described in this paper were implemented on

the FPX platform, shown in Figure 1. The FPX platform

contains two FPGAs: (1) a small Xilinx Virtex FPGA called

the Network Interface Device (NID) is configured with a

static bitfile, and (2) a large Xilinx Virtex FPGA called

the Reconfigurable Application Device (RAD) is reconfigured

with bitfiles loaded dynamically over a network [7]. New

bitfiles that implement modular data processing functions are

sent to the NID over the network within a bitfile that is

used to reconfigure the RAD [8]. The FPX uses an on-

board Maxim temperature measurement device (MAX1618)

to digitally sample the temperature of the RAD.

B. Thermal Shutdown Circuit

Figure 2 shows the side-view of an FPX platform that was

damaged by a bitfile running on the RAD that consumed

more power than the platform could dissipate in a chassis

with insufficient airflow to cool the system. The circuit board

warped and caused a short-circuit between power planes. The

excess current through the power pins burned the connector,

as can be seen in the photo. Motivated by the need to prevent

such a high-powered application from damaging another FPX,



Fig. 2. FPX side view: Note how layers of the board were warped because
of heat

a thermal monitor and shutdown circuit was implemented. The

circuit allows the NID to monitor the junction temperature of

the RAD. If an application causes the junction temperature of

the RAD to surpasses a programmable maximum threshold,

then the NID acts as a circuit breaker to unload and reconfigure

the high-power bitfile from the device.

C. Temperature Monitor and Thermal Shutdown Circuit Im-

plementation on the FPX

Application

MAX

1618
Alert

SMBus Data

SMBus Clk

RAD PROGRAM

To/From
Software

RAD NID

Compare
temp to

Shutdown temp

Max temp
Shutdown event

Application

MAX

1618
Alert

SMBus Data

SMBus Clk

RAD PROGRAM

To/From
Software

RAD NID

Compare
temp to

Shutdown temp

Max temp
Shutdown event

Fig. 3. Shutdown Circuit Architecture

Figure 3 illustrates how the temperature monitor and shut-

down circuit is mapped onto the FPX. The thermal shutdown

circuit was implemented using logic on the NID to prevent

an applications deployed on the RAD from exceeding a safe

operating temperature. The NID interfaced to a MAX1618, a

Maxim temperature monitor chip that measures the junction

temperature using a sense diode embedded in the silicon of

the RAD. The NID samples the MAX1618 and compares the

temperature received from this device to a user-programmable

maximum temperature threshold. If the preset threshold is

surpassed, the NID shuts down the application deployed on the

RAD by sending a command through the SelectMAP interface

of the RAD to clear the configuration memory.

The temperature of the RAD can also be monitored exter-

nally by sending a query message over the network to the

NID. The NID responds with a status message that reports

the temperature of the RAD. We wrote software to log

the temperature of the RAD while running custom-designed

thermal benchmark circuits. [1].

Figure 4 shows a plot of temperature over time for a circuit

that is shutdown due to exceeding a set thermal threshold of

70 C.[1]. Section IV discusses how this temperature monitor

and shutdown circuit was extended to implement adaptive

frequency control of applications deployed on the RAD.

Temperature vs. Time

(Cfg2x, 200 MHz, 70 C Threshold)

20

25

30

35

40

45

50

55

60

65

70

75

80

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

T
e
m

p
e
ra

tu
re

 (
C

)

Fig. 4. FPGA being reprogrammed by the Shutdown Circuit upon reaching
a thermal threshold of 70 C

IV. TEMPERATURE DRIVEN FREQUENCY CONTROL

This section begins with a discussion of the types of

applications that benefit from a thermally-adaptive frequency

management circuit. Next, we describe the operation of the

frequency controller that uses thermal feedback. This section

concludes with a description of how the adaptive frequency

mechanism operates on the FPX platform.

A. Target Applications

Reconfigurable systems with certain characteristics benefit

most from the use of adaptive frequency control using thermal

feedback. First, systems deployed in environments where the

temperature changes benefit by allowing the circuit to adapt

their performance. Second, systems that have multiple modes

of operation that impact their thermal output benefit from

adaptive thermal control. Third, systems that have bursty

computation with demands for low latency benefit by allowing

the device to temporarily operate at frequencies faster than

would be allowed in steady-state.

The more variation that exists in the range of possible

thermal conditions over which a circuit must operate, the

greater the benefit of using adaptive control. A design that

uses a fixed frequency must operate at a speed that will not

cause the application to exceed a preset thermal budget even

when operating under worst-case conditions. If there exists a

large difference between the worst-case and best-case thermal

conditions, a conservative frequency must be used to prevent

damage to the device or a shutdown mechanism must be

used to safeguard the system. The use of a thermally-adaptive

frequency allows the system to operate close the optimal

frequency for all thermal conditions.

Dynamic adjustment of frequency is especially useful for

systems that have bursty modes of operation. During idle

periods the system replenishes its available thermal budget.

When a burst of data arrives the device can operate faster

for a short amount of time, allowing applications such as an

Internet routing module to achieve lower latencies.

B. Adaptive Dual Frequency Switch

FPGAs available today from vendors such as Xilinx and

Altera have Delay Lock Loops (DLLs) that can multiply



clk

Frequency Control

to global 
clock tree 

Clk
Multiplier

(DLLs)

clk

4xclk
BUFG

2:1

MUX

clk

Frequency Control

to global 
clock tree 

Clk
Multiplier

(DLLs)

clk

4xclk
BUFG

2:1

MUX

Fig. 5. Frequency Multiplexing circuit

and divide a clock input signal. We use DLLs combined

with a 2:1 multiplexor to switch between the base input

clock and a clock that operates at 4x the base frequency.

The select line of the 2:1 multiplexor is controlled by logic

that monitors the application’s temperature and implements a

high and low temperature threshold control strategy. Figure 5

shows the architecture of the Frequency Multiplexing circuit.

More elaborate techniques can and should be used to avoid

clock glitches. For example a glitch free version of the 2:1

mux component can be implemented with the BUFGMUX

component available for the Virtex-II [9] and later generations

of Xilinx FPGAs.

C. Thermal Feedback Frequency Controller

A basic temperature control mechanism is implemented by

controlling the input to the frequency selector using control

logic based on thermal feedback. Application logic on the

reconfigurable device operates using the 4x clock while the

temperature remains below the upper threshold. Once the

upper threshold is reached, the application circuit is given the

base clock and allowed to cool down until the lower threshold

is reached. At this point, the cycle repeats.

The main idea of this approach is to modulate the duty

cycle at which the application runs with the faster (4x) clock.

As the external thermal environment changes, the duty cycle

will automatically adjust keeping the application temperature

between the upper and lower bounds. By selecting thresholds

appropriately and switching quickly between modes, the appli-

cation can maintain a target average temperature within tight

bounds.

The upper temperature threshold is the application thermal

budget. The objective is to achieve maximum computational

performance for a given thermal budget by adaptively ad-

justing the duty cycle as the thermal operating environment

changes.

D. System Integration

The implementation of our thermally controlled adaptive

frequency mechanism on the the FPX platform is shown in

Figure 6. Our approach has two components: the frequency

multiplexing circuit and the frequency control circuit. The

functional description of these two parts is given in section

IV-B and IV-C.

The frequency multiplexor resides in the RAD. This cir-

cuit uses the 4x clock multiplier circuit described in Xilinx

XAPP174 [10]. We modified the circuit by replacing the

4x clock output with the output of a 2:1 multiplexor. The

MAX

1618
Alert

SMBus Data

SMBus Clk

RAD PROGRAM

To/From
Software

RAD NID

Thermal Feedback
Frequency
Controller 

Upper Threshold
Lower Threshold

Shut down Threshold

Thermal

diode

Frequency Control

Application

Frequency
multiplexer

mux_clk

clk

MAX

1618
Alert

SMBus Data

SMBus Clk

RAD PROGRAM

To/From
Software

RAD NID

Thermal Feedback
Frequency
Controller 

Upper Threshold
Lower Threshold

Shut down Threshold

Thermal

diode

Frequency Control

Application

Frequency
multiplexer

mux_clk

clk

Fig. 6. Temperature Measurement and Threshold Frequency control mech-
anism

multiplexor uses the 4x clock as one input and the base clock

as the other. The selector of the mux is managed by the

frequency control circuit.

The frequency control circuit resides on the NID and is

responsible for controlling the frequency multiplexor circuit.

This circuit extends the thermal shutdown circuit described in

section III-B. A state machine was developed to implement

a temperature threshold controller. Configuration commands

sent to the NID over the network set the upper and lower

temperature threshold values. The thermal budget of the ap-

plication is the value contained by the upper threshold.

NID status messages were augmented with fields that return

the frequency at which the application is being driven in

addition to the application temperature. This information was

used in performance evaluation experiments, section V-C,

to compute the effective frequency of the application under

several thermal operating conditions.

V. IMPLEMENTATION

This section describes a computationally intensive FPGA

application that is capable of exceeding the safe thermal limits

of the FPGA package of 85 C. In section V-C, we use this

application circuit in a case study to evaluate the effectiveness

of our adaptive frequency approach.

A. Image Correlation Application

Image correlation is an application well-suited for hardware

implementation. It is highly parallelizeable [11], [12]. The

specific image correlation application we describe in this

paper scans an input image for up to four different patterns.

The circuit is inherently high-powered and cannot run at

its maximum clock rate without thermal management or it

overheats the FPGA.

Figure 7 shows the high-level architecture of the image

correlation application. Note the core of the circuit is separate

from the input and output module. The core uses the adaptive

frequency technique to adapt to changes in the operating

thermal environment, while the input and output modules use

a fixed clock. This simplifies the interface to the external

network interface components and memory modules. Asyn-

chronous FIFOs are used to transfer data between the two

different clock domains. The core logic of this application was

used to evaluate the effectiveness of thermal frequency control.

Instead of reading image data from external memory, signals

from a block RAM and a Linear Feedback Shift Register



Input
Module

Image
Correlation

Core

Output
Module

Clock
Multiplexing

Circuit

Correlation
Score

Image Data
Stream

Frequency
Control

Fig. 7. High Level System Architecture

(LFSR) were used to produce pseudo-random data for the

core to process. Results of synthesis and characteristics of the

application are given in Figure 8.

125 MHz26% (43)82% (15,808)64% (24,832)72% (27,788)

Max 

Frequency

Block

RAM

Occupied 

Slices

D Flip Flops 

(DFFs)

Lookup Tables

(LUTs)

VirtexE 2000 Resource Utilization

12.7/second

(at 125 MHz)

10 

(in parallel)
1 - 48-bit (grey scale)640x480

Image 

Processing Rate
# of Templates

# of Mask

Patterns
Pixel Resolution

Image Size

(# pixels)

Image Correlation Characteristics

a.)

b.)

125 MHz26% (43)82% (15,808)64% (24,832)72% (27,788)

Max 

Frequency

Block

RAM

Occupied 

Slices

D Flip Flops 

(DFFs)

Lookup Tables

(LUTs)

VirtexE 2000 Resource Utilization

125 MHz26% (43)82% (15,808)64% (24,832)72% (27,788)

Max 

Frequency

Block

RAM

Occupied 

Slices

D Flip Flops 

(DFFs)

Lookup Tables

(LUTs)

VirtexE 2000 Resource Utilization

12.7/second

(at 125 MHz)

10 

(in parallel)
1 - 48-bit (grey scale)640x480

Image 

Processing Rate
# of Templates

# of Mask

Patterns
Pixel Resolution

Image Size

(# pixels)

Image Correlation Characteristics

12.7/second

(at 125 MHz)

10 

(in parallel)
1 - 48-bit (grey scale)640x480

Image 

Processing Rate
# of Templates

# of Mask

Patterns
Pixel Resolution

Image Size

(# pixels)

Image Correlation Characteristics

a.)

b.)

Fig. 8. a.) FPGA Utilization, b.) Application Details

1) Algorithm: A 64x64 bit-mask pattern is scanned over

incoming images. A score is computed for each possible offset

of the mask. This score is the sum of the product of each bit

of the mask with a corresponding pixel value. The algorithm

for scanning an image can be represented by Equation 1:

U = 0 to M

V = 0 to N

SU,V =

R=y,C=x∑

R=0,C=0

I(U+C,V +R)T(C,R)

(1)

Figure 9 helps to illustrate this equation. Template T scans

image I from left to right and from top to bottom.

T0,0

T0,y

Tx,0

Tx,y

IM,N

I0,0

I0,N

IM,0

Image Correlation Example

Template

Image

T0,0

T0,y

Tx,0

Tx,y

IM,N

I0,0

I0,N

IM,0

Image Correlation Example

Template

Image

Fig. 9. Image Correlation Algorithm Example

2) Logic Layout: We found that the backend CAD tools

had trouble placing and routing this high resource utilization

application without manually controlled layout. To overcome

this problem, we manually placed our circuit to compactly fit

into the logic that implements the RAD (a VirtexE 2000E)

which allowed us to operate the circuit at a high clock

rate. Logic is placed on the FPGA as shown in Figure 10.

Precise layout of the circuit elements on the FPGA was

accomplished using the Relative Location (RLOC) attribute.

Figure 10 illustrates how data flows through the application

circuit. Data is shifted through the circuit in such a way that

pixels move only short distances between Flip/Flops, thereby

enabling the data path to run at a high clock frequency. Control

logic (not shown) is pipelined to control the operation of the

data path at a high clock rate. The layout helped to localize

computation around local resources. This, in turn, allowed the

backend tools to efficiently route components together.

Without the manual placement constraints, the Xilinx tools

were not able to fit the circuit into the FPGA. With automatic

placement, the MAP tool required 106% of the available slice

resources, while with manual placement constraints, only uses

82% of the available slices.

Image Correlation Core (10 template units, 640 pixels wide)

Current row in

Next row in

16

8

Mask in

Current 

row out8

Next 

row out 16

Template
Unit

0

Template
Unit

1

Template
Unit

2

Template
Unit

7

Template
Unit

8

Template
Unit

9

Score
out

21

Score out Buffer

210Score out bus

Score
out

Score
out

Score
out

Score
out

Score
out

Mask
Memory

64

0

Image

Buffer

Score out Image in 32

Image Correlation Core (10 template units, 640 pixels wide)

Current row in

Next row in

16

8

Mask in

Current 

row out8

Next 

row out 16

Template
Unit

0

Template
Unit

1

Template
Unit

2

Template
Unit

7

Template
Unit

8

Template
Unit

9

Score
out

21

Score out Buffer

210Score out bus

Score
out

Score
out

Score
out

Score
out

Score
out

Mask
Memory

64

0

Image

Buffer

Score out Image in 32

Image Correlation Core (10 template units, 640 pixels wide)

Current row in

Next row in

16

8

Mask in

Current 

row out8

Next 

row out 16

Template
Unit

0

Template
Unit

1

Template
Unit

2

Template
Unit

7

Template
Unit

8

Template
Unit

9

Score
out

21

Score out Buffer

210Score out bus

Score
out

Score
out

Score
out

Score
out

Score
out

Mask
Memory

64

0

Image

Buffer

Score out Image in 32

Fig. 10. Layout and Pixel data flow for Image Correlation core

B. Experimental Setup

Fig. 11. Experimentation Platform

The image correlation application is deployed on the RAD

of the FPX platform. The FPX was placed into a 3U rackmount

case, as shown in Figure 11. The case was equipped with



2 fans that each supply approximately 250 Linear Feet per

Minute (LFM) of air flow. The system has a removable case

cover, which is not installed for the photo shown in Figure 11.

Figure 12 describes the five thermal conditions used to eval-

uate our adaptive frequency approach. First, for the worst case

thermal operating condition (Scenario S1) a fixed frequency of

50 MHz was found to use up a 70 C thermal budget. Once this

fixed frequency was determined, the application was run under

the other four operating conditions to measure the unused

portion of the thermal budget. Next, the thermal feedback

adaptive frequency mechanism was deployed using the same

five scenarios. Temperature thresholds were set to force the

circuit to fully utilize the allocated thermal budget under all

operating conditions. For each scenario, the effective operating

frequency achieved by the adaptive frequency approach was

measured and compared to the circuit that used a fixed

frequency.

Yes027 C (81 F)S3

Yes125.2 C (77 F)S4

No035 C (95 F)S1

Yes224.5 C (76 F)S5

No026 C (79 F)S2

Case Cover 

Used
# of Fans

Ambient 

Temperature

Scenario S1 – S5

Yes027 C (81 F)S3

Yes125.2 C (77 F)S4

No035 C (95 F)S1

Yes224.5 C (76 F)S5

No026 C (79 F)S2

Case Cover 

Used
# of Fans

Ambient 

Temperature

Scenario S1 – S5

Fig. 12. Description of Experimental Scenarios S1-S5

C. Results and Analysis

Figure 13 and Figure 14 give a summary of the results

obtained from conducting experiments for scenarios S1-S5.

As can be seen the use of this thermal feedback adaptive

50

55.9

S3

119.59567.748.3Adaptive 30-120 MHz

50505050Fixed 50 MHz

S5S4S2S1 

Effective Frequency (MHz): Scenarios S1-S5

50

55.9

S3

119.59567.748.3Adaptive 30-120 MHz

50505050Fixed 50 MHz

S5S4S2S1 

Effective Frequency (MHz): Scenarios S1-S5

Fig. 13. Effect Frequency for Scenarios S1-S5

63

68.5

S3

6968.568.468.4Adaptive30-120 MHz

43466068.5Fixed 50 MHz

S5S4S2S1 

Average Temperature (C): Scenarios S1-S5

63

68.5

S3

6968.568.468.4Adaptive30-120 MHz

43466068.5Fixed 50 MHz

S5S4S2S1 

Average Temperature (C): Scenarios S1-S5

Fig. 14. Average Temperature for Scenarios S1-S5

frequency approach gives about a 2.4x improvement for the

best case scenario (S5) verses using the fixed frequency needed

for safe operation during worst case conditions. Figure 16 and

17 show more details of the results obtained.

Starting with the worst-case scenario S1, the base fixed

frequency was determined to be 50 MHz. For this scenario, the

adaptive frequency circuit achieves an effective frequency of

48 MHz. Under theses conditions, the fixed-frequency outper-

forms the adaptive frequency by about 4%. It is understandable

that the fixed-frequency circuit performs better in this case

because the fixed frequency is tailored for the worst-case sce-

nario. For all other thermal experiments, however, the adaptive

frequency obtains better performance as compared to the fixed

frequency circuit. The amount of thermal budget regained by

using a adaptive frequency is illustrated by Figure 15 a-e.

The main difference between scenario S2 and S3 is that S2

operated the rack-mount system without the cover installed.

The presence of a cover without operating fans significantly

degrades the thermal operating conditions. This is because the

case cover not only traps heat generated by the application, but

it also traps heat generated by the power supply unit located

in the case. Having the cover in place without operating fans

is nearly as bad of a scenario as S1, which used an external

heat source applied to a system without the case cover. When

the case cover is removed, heat can freely escape.

Scenarios S4 and S5 differ by the number of fans active.

As can be seen from Figure 12 while the ambient temperature

differs by less then 1 C, the difference in effective frequency

is 25%. The addition of the second fan does not drop the case

temperature significantly, but the increase in air follow does

significantly increase the systems ability to pull heat away

form the FPGA, therefore allowing the application to run at a

significantly increased frequency.

Figure 16 gives a side by side comparison of the duty cycles

observed for scenarios S1-S5. The duty cycle is shown over

the measured junction temperature. These plots are ordered

from top to bottom in increasing effective frequency. It can

been seen that the time spent at the high-end frequency of

120 MHz increases as thermal operating conditions improve.

no Fans, with Heat Source, no Case Cover (S1)

65

70

75

no Fans, no Heat Source, with Case Cover (S3)

65

70

75

no Fans, with Heat Source, no Case Cover (S2)

65

70

75

1 Fan, no Heat Source, with Case Cover (S4) 

65

70

75

2 Fans, no Heat Source, with Case Cover (S5)

65

70

75

0 5 10 15 20 25

Time (s)

J
u

n
c
ti

o
n

 T
e
m

p
e
ra

tu
re

, 
T

j 
(C

)

Frequency = 30 MHz

Frequency = 120 MHz

Duty cycle: 20.3% at 120 MHz = Effective Frequency 48 MHz

Duty Cycle

Temperature

Key

Duty cycle: 28.8% at 120 MHz = Effective Frequency 55.9 MHz

Duty cycle: 41.9% at 120 MHz = Effective Frequency 67.7 MHz

Duty cycle: 72.2% at 120 MHz = Effective Frequency 95 MHz

Duty cycle: 99.4% at 120 MHz = Effective Frequency 119.5 MHz

Fig. 16. Duty cycle comparisons of scenarios S1-S5



VI. CONCLUSION

An adaptive frequency control method using thermal feed-

back for reconfigurable hardware applications was presented.

The thermal control method was implemented on the FPX

platform and measurements were obtained to quantify the

effectiveness of adaptive frequency control. Results show that

for large variations in thermal operating environments, an

application using a thermally adaptive frequency obtains much

better performance than for the same circuit with a fixed

frequency. For our image-processing case study, we achieve

a factor of 2.4x in increased computational throughput.

ACKNOWLEDGMENT

The authors would like to thank the National Science

Foundation for the funding of this research under grant ITR

0313203.

REFERENCES

[1] P. H. Jones, J. W. Lockwood, and Y. H. Cho, “A thermal management
and profiling method for reconfigurable hardware applications,” in 16th

International Conference on Field Programmable Logic and Applica-

tions (FPL), Madrid, Spain, Aug. 2006.
[2] Intel Corporation, “Addressing power and thermal challenges in the

datacenter,” 2005.
[3] Intel 80200 Processor based on Intel XScale Microarchitecture Devel-

oper’s Manual, 2003.
[4] E. Wirth, “Thermal management in embedded systems,” Master’s thesis,

University of Virginia, 2004.
[5] ACPI, “Acpi specification,” http://www.acpi.info/spec.htm, Sept. 2004.
[6] C. T. Chow, L. S. M. Tsui, P. H. W. Leong, W. Luk, and S. J. E. Wilton,

“Dynamic voltage scaling for commercial fpgas,” in ICFPT, 2005, pp.
173–180.

[7] J. W. Lockwood, J. S. Turner, and D. E. Taylor, “Field programmable
port extender (FPX) for distributed routing and queuing,” in ACM Inter-

national Symposium on Field Programmable Gate Arrays (FPGA’2000),
Monterey, CA, USA, Feb. 2000, pp. 137–144.

[8] J. W. Lockwood, N. Naufel, J. S. Turner, and D. E. Taylor, “Re-
programmable Network Packet Processing on the Field Programmable
Port Extender (FPX),” in ACM International Symposium on Field

Programmable Gate Arrays (FPGA’2001), Monterey, CA, USA, Feb.
2001, pp. 87–93.

[9] Virtex-II Platform FPGA User Guide, Xilinx, 2005.
[10] Xilinx Inc., “Using delay-locked loops in spartan-ii fpgas,” Xilinx

XAPP174, Jan. 2000.
[11] Y. H. Cho, “Optimized automatic target recognition algorithm on scal-

able myrinet-field programmable array nodes,” in 34th IEEE Asilomar

Conference on Signals, Systems, and Computers, Monterey, CA, Oct.
2000.

[12] K. Chia, H. J. Kim, S. Lansing, W. H. Mangione-Smith, and J. Vil-
lasenor, “High-performance automatic target recognition through data-
specific vlsi,” IEEE Transactions on Very Large Scale Integration

Systems, vol. 6, no. 3, pp. 364–371, Sept. 1998.



60

65

70

75

0 5 10 15 20 25 30 35 40 45 50

Time (s)

J
u

n
c
ti

o
n

 T
e
m

p
e

ra
tu

re
, 

T
j 

(C
)

Average Temperature for 

Adaptive Frequency: 68.4 C

Measured Temperature for Adaptive Frequency 

(Effective Frequency = 48.3 MHz) 
Measured Temperature for Fixed 

Frequency of 50 MHz

50

55

60

65

70

75

0 5 10 15 20 25 30 35 40 45 50

Time (s)

J
u

n
c
ti

o
n

 T
e
m

p
e
ra

tu
re

 T
j 

(C
)

Average Temperature for 

Adaptive Frequency: 68.4 C

Measured Temperature for Adaptive Frequency 

(Effective Frequency = 67.7 MHz) 

Measured Temperature for Fixed 

Frequency of 50 MHz

17.5 C of Thermal Budget regained 

by Adaptive Frequency

60

65

70

75

0 5 10 15 20 25 30 35 40 45 50

Time (s)

J
u

n
c
ti

o
n

 T
e
m

p
e
ra

tu
re

, 
T

j 
(C

)

Average Temperature for Adaptive 

Frequency: 68.4 C

Measured Temperature for Adaptive Frequency 

(Effective Frequency = 55.9 MHz) 

Measured Temperature for 

Fixed Frequency of 50 MHz

5.5 C of Thermal Budget regained 

by Adaptive Frequency

40

45

50

55

60

65

70

75

0 5 10 15 20 25 30 35 40 45 50
Time (s)

J
u

n
c
ti

o
n

 T
e
m

p
e
ra

tu
re

, 
T

j 
(C

)

Average Temperature for 

Adaptive Frequency: 68.5 C

Measured Temperature for Adaptive Frequency 

(Effective Frequency = 95 MHz) 

Measured Temperature for Fixed 

Frequency of 50 MHz

22.5 C of Thermal Budget regained 

by Adaptive Frequency

40

45

50

55

60

65

70

75

0 5 10 15 20 25 30 35 40 45 50

Time (s)

J
u

n
c
ti

o
n

 T
e
m

p
e
ra

tu
re

, 
T

j 
(C

)

Average Temperature for 

Adaptive Frequency: 69 C

Measured Temperature for Adaptive Frequency 

(Effective Frequency = 95 MHz) 

Measured Temperature for Fixed 

Frequency of 50 MHz

26 C of Thermal Budget regained 

by Adaptive Frequency

a) Scenario 1 b) Scenario 2 

c) Scenario 3 d) Scenario 4 

e) Scenario 5 

60

65

70

75

0 5 10 15 20 25 30 35 40 45 50

Time (s)

J
u

n
c
ti

o
n

 T
e
m

p
e

ra
tu

re
, 

T
j 

(C
)

Average Temperature for 

Adaptive Frequency: 68.4 C

Measured Temperature for Adaptive Frequency 

(Effective Frequency = 48.3 MHz) 
Measured Temperature for Fixed 

Frequency of 50 MHz

50

55

60

65

70

75

0 5 10 15 20 25 30 35 40 45 50

Time (s)

J
u

n
c
ti

o
n

 T
e
m

p
e
ra

tu
re

 T
j 

(C
)

Average Temperature for 

Adaptive Frequency: 68.4 C

Measured Temperature for Adaptive Frequency 

(Effective Frequency = 67.7 MHz) 

Measured Temperature for Fixed 

Frequency of 50 MHz

17.5 C of Thermal Budget regained 

by Adaptive Frequency

60

65

70

75

0 5 10 15 20 25 30 35 40 45 50

Time (s)

J
u

n
c
ti

o
n

 T
e
m

p
e
ra

tu
re

, 
T

j 
(C

)

Average Temperature for Adaptive 

Frequency: 68.4 C

Measured Temperature for Adaptive Frequency 

(Effective Frequency = 55.9 MHz) 

Measured Temperature for 

Fixed Frequency of 50 MHz

5.5 C of Thermal Budget regained 

by Adaptive Frequency

40

45

50

55

60

65

70

75

0 5 10 15 20 25 30 35 40 45 50
Time (s)

J
u

n
c
ti

o
n

 T
e
m

p
e
ra

tu
re

, 
T

j 
(C

)

Average Temperature for 

Adaptive Frequency: 68.5 C

Measured Temperature for Adaptive Frequency 

(Effective Frequency = 95 MHz) 

Measured Temperature for Fixed 

Frequency of 50 MHz

22.5 C of Thermal Budget regained 

by Adaptive Frequency

40

45

50

55

60

65

70

75

0 5 10 15 20 25 30 35 40 45 50

Time (s)

J
u

n
c
ti

o
n

 T
e
m

p
e
ra

tu
re

, 
T

j 
(C

)

Average Temperature for 

Adaptive Frequency: 69 C

Measured Temperature for Adaptive Frequency 

(Effective Frequency = 95 MHz) 

Measured Temperature for Fixed 

Frequency of 50 MHz

26 C of Thermal Budget regained 

by Adaptive Frequency

a) Scenario 1 b) Scenario 2 

c) Scenario 3 d) Scenario 4 

e) Scenario 5 

Fig. 15. Thermal budget gap for scenarios S1-S5, upper temperature threshold=70 C, lower temperature threshold=67 C


