
Context-Free Grammar Parsing for High-Speed Network
Applications in Reconfigurable Hardware ∗

James Moscola
†

Young H. Cho
‡

John W. Lockwood
§

jmm5@arl.wustl.edu young@arl.wustl.edu lockwood@arl.wustl.edu

Washington University in St. Louis
Dept. of Computer Science and Engineering

St. Louis, Missouri 63130

1. INTRODUCTION
As the Internet continues to increase in popularity, new

and more powerful technologies are emerging. These tech-
nologies are integrated into network applications for process-
ing data as it traverses across the Internet.

Currently, many network applications are designed to pro-
vide network security. Such technologies include spam fil-
ters, virus scanners, and network intrusion detection and
prevention systems. Other applications include packet fil-
ters, content-based routing, and natural language process-
ing. At the core of each of these systems resides a rule-based
pattern matcher, capable of detecting strings and/or regular
expressions.

In recent years, many researchers have developed pat-
tern matching hardware architectures capable of keeping
pace with increasing network speeds and rule sets. How-
ever, naive pattern matchers do not consider the context
of a match in the data. Therefore, they are susceptible to
false positive identification. On a high-speed network, even
a small number of false positives can surmount to an un-
manageable amount of data.

This work intends to illustrate how context-free grammars
(CFG) can be utilized to increase the accuracy of pattern
recognition. CFGs provide a higher level of expressiveness
than both strings and regular expressions by defining the
semantics of a pattern within the structure of its language.
This semantic information can then be used to reduce the
number of false positive pattern identifications.

In addition to improving on existing network applications,
having the ability to process CFGs and add semantic infor-
mation to a network flow may open the door to new appli-
cations that are not currently possible with simple pattern
matching (e.g. on the fly source code compilation).

2. PREVIOUS WORK
In previous work, hardware-based CFG parsers were im-

plemented using the Cocke-Younger-Kasami (CYK) algo-

∗This research was sponsored by the Air Force Research
Laboratory, Air Force Materiel Command, USAF, under
Contract number MDA972-03-9-0001. The views and con-
clusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of
AFRL or the U.S. Government.†Expected graduation: May 2007
‡Advisor
§Advisor

rithm [1, 2]. While these implementations do manage to
decrease the O(n3) time complexity of the CYK algorithm
down to O(n2), the space required by the algorithm remains
unchanged at O(n2), where n is the length of the input
string. Such a large space requirement makes the CYK algo-
rithm unsuitable for network applications that must main-
tain parsing information for millions of network flows simul-
taneously.

Other previous work includes a hardware-based imple-
mentation of an Early parser [3]. Again, the space require-
ments for this table driven parsing algorithm make it un-
suitable for network applications.

The goal of our work is to design and implement a gen-
eralized high-speed CFG parser capable of processing and
maintaining the state of millions of simultaneous network
flows. Additionally, the parser should be robust and capa-
ble of recovering from errors in the input data stream.

3. PARSER ARCHITECTURE
The main components of the proposed architecture con-

sist of a tokenizer (i.e. a pattern matcher) that is generated
from a token list, a parsing structure that is generated from
the production list of a grammar, and an error detection
and recovery unit. A high level block diagram of the ar-
chitecture is shown in figure 1. As demonstrated in our
previous work [4, 5]1, a compiler automatically generates
the CFG hardware from a Lex and Yacc style specification.
The structure of the grammar is determined using the First
and Follow set algorithms for software predictive parser gen-
eration. The generated hardware is a highly pipelined and
parallel engine that recognizes patterns and the semantics
of streaming data.

Decoder Tokenizer
data

stream

Lexical Scanner

...

token list

Back
End

Parser

...

production list

FIFO

Error D/R

Figure 1: Hardware parser with error detection

1Supporting Papers: [4, 5]

4. TOKENIZER
In our previous work [5, 6], we illustrated several highly

pipelined architectures capable of performing tokenization.
The benefits of each architecture vary slightly. A regular
expression chain is capable of matching regular expressions,
but is not as compact as a pipelined character grid. The
pipelined character grid is both compact and scalable, but
cannot match full regular expressions. A hybrid architecture
was also developed that encompasses the benefits of both of
the previous architectures. The hybrid architecture is both
scalable and capable of matching regular expressions while
still maintaining the smaller size of the pipelined character
grid.

5. GRAMMAR PARSER
Unlike other parsers which use a table to look up the

next state of the parser, we map the grammar rules di-
rectly onto a Field Programmable Gate Array (FPGA) in
a highly pipelined structure. The structure of the grammar
is determined using the First and Follow set algorithms for
predicative parsers.

A simple example grammar is shown in figure 2. Figure 3a
shows the finite-state automata required to match the gram-
mar and figure 3b shows the logic required for the hardware
parser. However, without a stack or some other method for
keeping track of the nesting depth, this hardware is not a
true CFG parser. As is, this hardware design will accept in-
puts that are not in the language specified by the grammar.
For example, the invalid string “((a))))” would be
accepted by the hardware.

No. Production
1 A → (A)
2 A → a

Figure 2: CFG for “a” with balanced parenthesis

)

End

a

(

Start

(

A

a

)

Start

End

(a) Finite-State Automata (b) Hardware Logic

Figure 3: Representations for grammar in figure 2

We intend to augment the hardware in figure 3b with a
stack (figure 4a) to support true CFG parsing. However,
to correctly parse millions of network flows simultaneously,
each flow would require its own stack. Maintaining millions
of stacks on-chip is not currently possible, and swapping a
stack in and out of off-chip memory between network packets
would dramatically decrease throughput. Thus, adding a
stack would bring us further from our goal of developing a
hardware parser capable of processing millions of network
flows.

)

+1

-1

value

(

(b) Counter(a) Stack

push

pop
)

(

Figure 4: Maintaining nesting depth with stacks and
counters

In lieu of adding a stack for each network flow we want to
parse, we can minimize the storage space required by em-
ploying small counters (figure 4b) for each of the tokens that
can be nested. While millions of these counters still could
not be maintained on-chip, the time required to write/read
these counters to/from off-chip memory would be much less
than that of a stack. However, both the size and number of
counters need to be limited in order to minimize the amount
of data that is swapped between network flows.

While stacks and counters may be able to maintain the
state of a CFG parser during parsing, we intend to explore
the possibilities of building parse trees after parsing. Using
the hardware in figure 3b to output a series of tokens and
production numbers, a back end software process can then
build the parse tree and determine the context of each token.
This software process can either be executed off-chip or on-
chip using an embedded processor core.

6. REFERENCES
[1] Cristian Ciressan, Eduardo Sanchez, Martin Rajman,

and Jean-Cedric Chappelier, “An FPGA-Based
Coprocessor for the Parsing of Context-Free
Grammars,” in Proceedings of IEEE Symposium on
Field-Programmable Custom Computing Machines
(FCCM), Napa, CA, Apr. 2000.

[2] Ciressan Cristian-Raul, Sanchez Eduardo, and Rajman
Martin, “An FPGA-Based Syntactic Parser for
Real-Life Unrestricted Context-Free Grammars,”
Technical Report No. 01/373 01/373, Swiss Federal
Institute of Technology (EPFL), Lausanne
(Switzerland), October 2001.

[3] Andreas Koulouris, Nectarios Koziris, Theodore
Andronokos, George Papakonstantinou, and Panayotis
Tsanakas, “A Parallel Parsing VLSI Architecture for
Arbitrary Context Free Grammars,” in Proceedings of
International Conference on Parallel and Distributed
Systems (ICPADS), Tainan, Taiwan, Dec. 1998.

[4] Young H. Cho, James Moscola, and John W.
Lockwood, “Context-Free Grammar based Token
Tagger in Reconfigurable Devices,” in Proceedings of
International Conference of Data Engineering
(ICDE/SeNS), Atlanta, GA, USA, Apr. 2005.

[5] James Moscola, Young H. Cho, and John W.
Lockwood, “Reconfigurable Context-Free Grammar
based Data Processing Hardware with Error Recovery,”
in Proceedings of International Parallel & Distributed
Processing Symposium (IPDPS/RAW), Rhodes Island,
Greece, Apr. 2006.

[6] James Moscola, Young H. Cho, and John W.
Lockwood, “Fast Semantic based Identification of
Regular Expressions using Reconfigurable Devices,” in
submitted to IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), Napa, CA,
Apr. 2006.

