
Programmable Hardware for Deep Packet Filtering on a Large
Signature Set

Young H. Cho and William H. Mangione-Smith
Department of Electrical Engineering

The University of California, Los Angeles, CA 90095
{young, billms}@ee.ucla.edu

Abstract

Damage caused by the recent series of application-level
network attacks clearly indicate an immediate need for in-
creased security. Most of these attacks can be more accu-
rately detected by a technique termed Deep Packet Inspec-
tion. Deep packet inspection not only examines the packet
header, but also looks through the entire payload search-
ing for all of the user specified patterns. Payload pattern
search is an expensive process, especially when the set of
patterns is large. Current solutions employ software fil-
tering systems that is not practical for bandwidth beyond
100 Mbps. For example, one of the most widely used in-
trusion detection system, Snort, configured with 845 pat-
terns can sustain a throughput of only 50 Mbps running
on a dual 1-GHz Pentium III system. The bottleneck of
such system is the dynamic pattern search. Therefore, we
implement a fast dynamic pattern search engine on a field
programmable gate array. Our system filters and identifies
the entire 1,625 unique patterns defined in the most cur-
rent version of Snort rule set. This system is mapped onto
a single 400k Xilinx Spartan 3 FPGA - XC3S400 with a
filtering rate of 1.6 Gbps.

1 Introduction

Flourishing network viruses indicate that inspecting the
network packet header alone is not sufficient to protect
computers from intrusion. Deep packet inspection not
only examines headers but also the payloads of pack-
ets. Therefore, a security system that incorporates a deep
packet filter offers better protection from attacks than tra-
ditional firewalls. For example, traditional firewall have
not been effective in differentiating network packets con-
taining the “Code Red” worm from normal packets. How-
ever, deep packet inspection system can be configured to
detect “Code Red” worm by searching for a string pat-

∗This research work was supported under NSF grant #CCR-0220100.

tern “.ida?” in the payload [5, 4]. It seems inevitable that
future firewalls will need to employ some form of deep
packet inspection to increase network security.

1.1 Dynamic Pattern Search

Some current firewalls employ forms of deep packet in-
spection [9]. Most of these systems use one or more gen-
eral purpose processors running signature-based packet
filtering software. It is difficult for a single software deep
packet inspection system for 500 realistic patterns to sus-
tain a bandwidth of 100 Mbps or more.

This performance bottleneck is mainly due to the dynamic
position of the target patterns in the packet payload. Since
the location of the pattern is not predetermined, the pat-
terns must be compared starting from every byte align-
ment of the payload during the string search process.
Thus, the packet throughput of a search algorithm run-
ning on a sequential processor decreases as the number of
byte comparison increases.

Our contribution in this paper is a scalable reconfigurable
hardware architecture for the dynamic pattern search task.
We examine alternative hardware implementations for the
patterns defined in the most recent Snort rule set using
the architecture. Ultimately we present a single chip so-
lution using a combination of reconfigurable discrete de-
coder and built-in memory design.

There are a few other research projects on dynamic pat-
tern search using FPGAs. Thus, we first describe the key
aspects of these implementations in the following section.
Then, in sections 3 and 4, we define our decoder based
and memory based architecture for a scalable dynamic
pattern search system. Based on the architecture, we im-
plement and map a compact pattern search system into
a small FPGA in section 5. Finally, we conclude with a
summary and comparison of our work with other similar
results.

2 Related Work

Recent work by more than one research group has looked
at the application of FPGAs to signature matching. Sidhu
and Prasanna mapped Non-deterministic Finite Automata
(NFA) for regular expression into FPGA to perform fast
pattern matching [15]. Then Franklin and Hutchings im-
plemented a pattern search engine in JHDL, based on a
subset of Snort IDS rules [10].

Moscola and Lockwood translated regular expressions
into deterministic finite automata (DFA) showing that, in
practice, most DFAs optimize to compact and fast hard-
ware [13]. Due to the parallel nature of the hardware,
these designs maintained high performance regardless of
the size of the patterns.

The Granidt project of Los Alamos National Laboratory
implemented a fast re-programmable pattern search sys-
tem using content addressable memories (CAM) [11].

Our initial work used the chains of 8-bit decoders to build
fast pattern match engines that can sustain a bandwidth
of 3.2 Gbps [5]. Sourdis mapped a similar design with a
deeper pipeline to increase the filtering rate up to 10 Gbps
[16].

A research group from Washington University fit a pattern
detector with most of the Snort rules into a single FPGA
(Xilinx XCV2000E) using index lookup technique. With
the use of Bloom filters [3], they detect the patterns at
600 Mbps with some false positives. However, due to the
nature of the algorithm, identifying the detected or false
positive patterns would eventually require a string com-
parison process [8, 12].

Our follow-up work and a similar JHDL based design by
Clark made contribution in reducing the size of the de-
sign by eliminating duplicate logic [4, 6]. Such improve-
ment allowed the decoder design to fit into a single FPGA
(Spartan 3 - XC3S2000) with byte to gate ratio of 1 [4].

3 Reconfigurable Decoder Filter

As with most of the projects described in the previous
section, our dynamic pattern search engine uses the high-
level software rule signature from Snort to build a recon-
figurable deep packet filter.

A rule contains information to search through all layers of
network packets to detect a particular attack. When packet
is determined to contain a targeted header, an exhaustive
search is performed on its payload to confirm a detection
of an attack [14]. Snort allows the search area within the
payload to be constrained in order to speed up software

searches and reduce false positives. Other systems have
similar technique.

AND

String
Input

Serial
String

Output

D

C
0x43 0x42 0x41

B A

0

1−bit register

Pipeline of 8−bit registers

AB

10 1
Gates

Serial

Figure 1: Simple string search engine for “ABC”: Since
the input sub-pattern is “ABD”, the comparator detects no
match.

The basic concept of our deep packet filter is a direct byte
to byte comparison done in parallel hardware. The recon-
figurable logic gates are configured into chain of 8 to 1 bit
decoder to detect stream of target patterns at every cycle.

AD
E
A
A

B

D
C B

A

C B
A

A

E D
E D

C

E

B

D
C

E

e e e e

1 1 1 1
0 0 0 0

0 1 0 0
0

Match

E
A
B
C

0 1 0 0

0 0 0 0

Figure 2: Parallel string search engine for “ABCDE”:
“ABC” was matched on the previous cycle, enabling the
registers to allow signal from “DE” comparator to latch;
on following clock cycle, Match signal would indicate a
match.

Using the same concept, the processing unit is scaled by
widening the bus and adding duplicate inspection mod-
ules for different byte alignments. The system can achieve
higher bandwidth using parallel sets of sub-pattern com-
parator in place of the 1-byte comparators in figure 1
[5, 4]. Figure 2 illustrates the inspection modules with
four times the bandwidth of the single byte datapath.

IP

Prot

Enbl

. . .

. .
 . OR

Err

Unit
Control

32bit Reg.
Match
MAC

Addr

Port
Num

AND

RULE 1

RULE 2

RULE n

Content
Pattern
Match

Malicious
Packet
Flag

Pipelined 32 bit Data Stream

Figure 3: Parallel deep packet filter

These modules are connected in parallel, to compare in-
coming data with all the target patterns at every cycle.
Therefore, performance of the filter is only dependent on
the bus width and the maximum clock rate of the design.
As shown in figure 3 the dynamic pattern search engine
work together with static header detector to provide more
accurate results.

3.1 Compact Pattern Search Tree

Directly applying the above concept gives a simple design
with regular structure. On the other hand, it is a large
design with many redundant substructures. We next begin
to develop a design that is more area efficient.

3.1.1 Reusing Comparators

Each byte comparator is constructed using 8-to-1 bit de-
coders. Since all the comparators use the same data in-
put pins, there are many duplicate decoders. Therefore,
we can retain one decoder output for all the duplicate de-
coders instead of distributing the same logic at every in-
stance of the pipelined chains [4, 6].

For example, figure 4 shows that the output of the “B” de-
coder in the first pipeline stage can be reused for two other
decoders in the second pipeline stage. By eliminating all
the duplicate logic, the example design only needs a total
of eight decoders. Thus, the total logic requirement for the
example is reduced to 25 percent of the original design.

System with a large set of patterns maps all or most com-
binations of 8-bits. Therefore, 8-to-256 bit decoder can be
placed at the header of each byte alignment of the search
engine to provide 1-bit comparison result for incoming

B
A

A
B

B
A
B

B
A B

8
8
8
8

4Byte
Input

Rule for
“BABAB”

A
B

B
A

A
B
A

A
B A

Rule for
“ABAB”

A
B

B

A
B

B

Figure 4: Reusing common 8-bit comparators: All the du-
plicate comparators in the same alignment are combined.

sequences of bytes [4, 6].

In addition to 1-byte comparison, a design with wider dat-
apath requires inspection of the sub-patterns at different
alignments of the bus. As shown in figure 2, a 4-byte
datapath contains four multiple byte comparators at each
pipeline stages. Since all sub-pattern detectors are con-
nected in parallel, there may be multiple comparators that
check for the same sequence. As we eliminated of all
the duplicate 1-byte decoders, the sub-pattern compara-
tors can also be trimmed.

B
A

A
B

B
A
B

B
A B

8
8
8
8

4Byte
Input

Rule for
“BABAB”

A
B

B
A

A
B
A

A
B A

Rule for
“ABAB”

A

A
B

B

A
B

B

B

B
A

A
B B

AB B

Same Substrings

Figure 5: Reusing Common Substrings: All the matching
substrings with same alignment are combined.

As example of the sub-pattern combining process is
shown in figure 5. There are 15 sub-pattern comparators
that are used to construct the detectors for the patterns
“BABAB” and “ABAB”. From inspection, we find that
comparators for sub-patterns “ABAB”, “BAB”, “AB”,
and “B” can be reused. [4].

Every target pattern is broken into a set of byte segments

of lengths less than the width of the datapath. Then a
set of unique segments can be extracted from the original
set. Each of the unique segments are then implemented
as a single comparator that simply ANDs four output bits
from the 8-to-256 bit decoder. The outputs from these
sub-pattern comparators are forwarded to all the stages of
the modules that use them.

3.1.2 Forming a Keyword Tree

Aho and Corasick’s keyword tree [1] is used in many ef-
ficient software pattern search algorithms, including the
Snort IDS [7]. We borrow the same concept to reduce the
amount of hardware required to construct the pipelined
pattern search engine.

E X A M P L E
E X A C T
E X I S T
E D G E

P L E
T

S T
G E

X A M
C

I
D

E

Figure 6: An example of Aho and Corasick’s Keyword
Tree: 6 bytes are optimized away.

As shown in figure 6, keyword tree is a way to store set of
patterns into an optimized tree of common keywords. The
conversion not only reduces the amount of required stor-
age, but it also narrows the number of potential patterns
as the program traverses down the tree.

Accordingly, the search pattern set can be restructured
into keyword trees. Constructing the trees for our purpose
requires that the length of each keyword be in multiples
of the datapath width. Once the keyword tree is gener-
ated, it is converted into the pattern search tree with same
function as parallel units with less logic.

3.2 Signature Index

The inspection module for each pattern produces a 1-bit
output to indicate a match at that clock cycle. It maybe
sufficient in some applications to simply indicate a match,
with identification accomplished in software. However,
it is often desirable to produce a corresponding signature

index number.

A small index encoder module can be written in VHDL
as a chain of CASE statement. However, an encoder with
thousands of input does not make such construction fea-
sible due to poor translation of most synthesis tools. In
a naive implementation of an encoder for a large set of
rules, the index encoder is almost always the critical path
for of the entire system. Consequently, we have investi-
gated more efficient designs.

3.2.1 Simple Index Encoding

For the purpose of generating a compact hardware, we
assume only one input pin will be asserted at any clock
edge. With this assumption, our address encoder can be
built using the combinations of outputs from the binary
tree of OR gates.

Based on natural characteristic of the binary tree, we de-
termine that each index bit is on if any of the odd nodes
on the corresponding level of the tree is asserted. For ex-
ample, a four bit index encoder for a 15-input encoder is
written as equations 1 through 4.

Index3 = a1 (1)

Index2 = b1 + b3 (2)

Index1 = c1 + c3 + c5 + c7 (3)

Index0 = d1 +d3 +d5 +d7 +d9 +d11 +d13 +d15 (4)

A static pattern search unit working with dynamic search
unit would most likely cause only one of the input pins to
be asserted at any cycle. However, there is still a possibil-
ity that a search engine will detect more than one pattern
at one time instance. In this situation, the previously de-
scribed index encoder may not be sufficient. One solution
to the conflict is to divide the set into multiple sets; each
subsets containing non-overlapping patterns. Then each
sub-set pattern search unit can have its own index encoder.
In some cases limited output pin count may make it infea-
sible to have multiple index output. Therefore, in such
case, it maybe desirable to designate a priority to the pat-
tern index.

We have developed two methods for assigning index pri-
orities. The first method uses software pre-processing to
assign priority numbers to the patterns. The other method
directly modifies the hardware to implement index prior-
ity.

The problem of simultaneous pattern detection is only
seen when two or more input pins are asserted at the same
time. When multiple input pins are asserted, our encoder
applies a bit-wise OR to all the index numbers. There-
fore, at the output pin, we will see the combined output of

two or more indices which may not give any indication of
detected indices. By pre-processing and reassigning the
index orders, one can effectively give priority of one pat-
tern over another.

For all the patterns that can assert encoder inputs at the
same time, one can assign index numbers to satisfy equa-
tion 5; which applies bit-wise OR to all the indices where
In is an index number with higher value of n indicating
the higher priority.

In|In−1|...|I0 = In (5)

Once all the indices are assigned for the overlapping pat-
terns according to the desired priorities, the indices can
be assigned to the rest of the patterns. In this method,
there is a limitation place on the size of prioritized pattern
set. The maximum number of indices for each set is equal
to the number of index output pins. There may be sev-
eral independent sets of overlapping patterns in a realistic
configurations, but their number of simultaneously over-
lapping patterns are usually less than four. Therefore, for
most sets, this technique is sufficient. The advantage of
using this method is that no additional gates are needed.

For situations where strict priorities are need, we present
a hardware priority index encoder. With additional gates,
each pattern can have an index priority. We design a pri-
ority index encoder with higher index signifies higher pri-
ority.

According to the binary OR tree, the most significant in-
dex bit of is “1” if any of the D nodes under A1 node is
asserted. Since the higher numbered D nodes have the
priority over the lower, the output of A0 node need not
be considered. Therefore, the most significant bit value is
assigned as the output of A1. For the next address bit, we
consider branches with nodes that are immediate children
of A1 and A0. We can deduce that the second index bit is
“1” if the output of B3 is asserted. But this time, we also
find that the index bit is “1” if the output of B3 is “1” while
none of the D nodes under A1 is asserted; we only need to
check that A1 is “0” to guarantee that none of its children
nodes are asserted. Using such method, equations for less
significant bits can be constructed. We apply this method
for a 15-bit input to extract index bit equations 6 to 9.

Index3 = a1 (6)

Index2 = b1 · a1 + b3 (7)

Index1 = c1 · b1 · a1 + c3 · a1 + c5 · b3 + c7 (8)

Index0 = d1 · c1 · b1 ·a1 + d3 · b1 ·a1 + d5 · c3 ·a1+ (9)

d7 · a1 + d9 · c5 · b3 + d11 · b3 + d13 · c7 + d15

With registers at the output encoded address bits, the crit-
ical path has maximum of (log n)-1 gate delays where n is

the number of the input pins. Since pattern search struc-
tures are pipelined after every gate, such long chain of
gates become the critical path. Each look-up-table in most
FPGAs are usually paired with a D-flipflop. Therefore our
design of the encoder inserts additional pipeline registers.
Figure 7 shows the pipelined OR tree with most 2-two
input gates replaced by 1-four input gate followed by D-
flip flop. The logic for index equations are also further
pipelined to maintain 1-level of gate in between pipelined
registers.

1A

B

C

3 2 1

Stage 1

Stage 2
D-Flip Flop

7 6 5 4 3 2 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1D

D-Flip Flop

Figure 7: Highly pipelined binary OR tree - two 2 input
gates are collapsed into one 4 input gates to reduce the
gate count. Pipelining is applied for single gate level of
critical path.

4 Reconfigurable ROM Filter

We have also developed a memory based filter as shown in
figure 8, that uses the decoder based filter to “pre-screen”
the beginning part, which we call “prefix”, of the potential
pattern before invoking complete comparison with the rest
of the patterns called “suffix.”

Pipelined
Pattern

Alignment
Byte

Data
In Bit

Match

Address
Suffix Suffix

Pattern
Read
Only

Comparator

Pipeline

Prefix
Match

Module

Multiplexed

Memory

Figure 8: Block diagram of a memory based pattern
search engine

The index generated by the prefix search engine points
to an address into a ROM where the suffixes are stored
as illustrated in figure 9. For multiple byte datapath, the
alignment information of the matching prefix is used to
realign the data for correct comparison.

Unlike the 8-to-256 decoder used as a comparator, the 1-
byte XOR comparators needed in the design requires over
eight gates. But, since only one set of comparators is used
by all the patterns stored in the ROM, the average gates
per byte can be much less than the full decoder imple-
mentation.

... ...A B C D

Prefix Suffix

Translated

Address

Prefix
Match

Module

Read
Only

Memory

Stored

Figure 9: Pattern prefix and suffix

4.1 Pattern Selection

In order for a given design to function correctly, one must
partition the patterns and map them into the ROMs. The
most important condition in partitioning the rule set is that
all the prefixes in each partition must be unique. For dif-
ferent length prefixes, the tail end of the longer prefixes in
the partition must not match the shorter prefixes. Other-
wise, more than one prefix match can occur. If there are
more than one prefix detection, the module can not deter-
mine which suffix to read from the ROM.

Since every clock can potentially produce a valid index,
suffix comparison must be done at most once per cycle.
Thus, any prefixes that can produce two different align-
ments must be assigned to separate ROMs. For a single
byte datapath, this constraint does not cause any problem,
since the data is always at zero alignment. However, cer-
tain prefixes can match two different alignments in multi-
ple datapath design.

For instance, let’s assume that in the 4-byte datapath,
a prefix match module was configured with a prefix
“ABAB”. If the incoming data started with “ABAB,” the
alignment for the prefix could be either 0 or 2. Therefore,
depending on the datapath and the lengths of the prefixes,
conditions must be formed to test every pattern in the set
to allow only up to one index detection at each cycle.

Consider further that in a 4-byte datapath with fixed 4-
byte prefixes, all prefixes in the partition must meet the
following three criteria. (1) Byte 1 of the prefix can not be
equal to byte 4. (2) The substring from byte 1 to 2 cannot
equal substring byte 3 to 4. (3) Substring from byte 1
to 3 cannot equal substring byte 2 to 4. Other alignment

constraints are possible, but 1 and 4 byte designs are the
most likely to be built.

4.2 Prefix Match Module

The role of the prefix match module is to match an incom-
ing data with a prefix of patterns configured in the datap-
ath. For multiple byte datapath, it must also generate an
alignment offset of the corresponding suffix.

Alignment Alignment Alignment

Prefix 1 Prefix 2 Prefix N

OR

Byte Alignment

Addr Enc

Suffix Index

Figure 10: Prefix match module

The pattern search engine of the prefix match module is
equivalent to the decoder based pattern search engine pre-
sented earlier. In addition to the pattern search engine,
for multiple byte datapath alignment information must be
generated as shown in figure 10. Our software synthesis
tool guarantees that only one prefix in a given subset will
be detected at each clock cycle, it does not have to con-
sider the priority of matching patterns as with the decoder
filter.

4.3 FPGA Memory Module

Since memory modules are not standardized among dif-
ferent FPGA manufacturers, describing a generic and ef-
ficient memory module in VHDL is difficult. Even if the
generic VHDL module are created, most vendor-specific
compilers usually do not effectively map them as a mem-
ory. Instead, memory modules are usually transformed
into combinational logic that may waste large amount of
resources. In order to most effectively use the embedded
memory, a target specific VHDL generator is necessary.

Most FPGA vendor tools have memory primitive tem-
plates that can be used to correctly configure the built-in
memory. A primitive template is chosen based on the di-
mensions of the pattern set for the best utilization. For
the pattern search application, the memory configuration
with the widest data bus is the best because of the long
length of the patterns. Once the template is chosen for a
given pattern set, its suffixes are processed and written in

to the multiple primitive modules. These modules are in-
stantiated and connected within a top memory module to
hide the distribution of the memory content over multiple
modules.

4.3.1 Improving Memory Utilization

After the patterns are partitioned into ROMs, each set may
contain suffixes of varying lengths. When the set is stored
in the ROM, the memory utilization tends to be low due
to the fixed width of the memory; which is as wide as the
longest suffix entry in the set. There are a few ways to
modify the memory to improve its utilization. Since our
goal is to minimize the logic resource, we present a sim-
ple modification to the memory that can greatly increase
utilization.

(b) Higher Utilization

Width (K+1) bits

N
/2

 E
nt

ri
es

N
 E

nt
ri

es

(a) Sorted Suffix

Width K bits

Figure 11: Rearranging data to increase memory utiliza-
tion

While experimenting with dividing the patterns, we found
that the majority of sets were mid-size suffixes. Most of
the sorted suffixes look similar to figure 11a. When these
patterns are stored directly into the memory, nearly half
of the memory is wasted. Our modification improves the
utilization by filling in the empty spaces with the valid
data.

We begin by sorting the patterns in the set by their length.
Then all the even entries are sequentially stored from the
first entry of the memory to the last. Then all the odd
entries are stored flipped in terms of bit sequences and
stored from the last entry to the first as shown in figure
11b. This process effectively stores the odd entries into a
transposed memory.

In order to correctly read the rearranged memory entries,
a small amount of wrapper logic is necessary. Figure 12
is a block diagram of the wrapper logic. At the address
input of the memory, all the bits, except for the least sig-
nificant bit (LSB), are passed to the actual memory. The
LSB is used to determine whether the memory is even or
odd. If the address is even, the rest of the address bits

Output(K:0)
Memory

data
(m−1:0)

CLK

Data(0:k)

1

Physical
Address

Addr(0)
d

addr

qDFF

0

1

0
Addr(m:1) Data(k:0)

Figure 12: Increasing the memory utilization

are unchanged and passed on as a physical address. Oth-
erwise, the address bits are first inverted and then passed
on to the memory. Likewise, the output of the memory is
connected to a 2-to-1 multiplexor with the LSB connected
to its select pin. When the LSB indicates even entry, the
normal output is selected. If odd entry is called, the output
with the reversed bit order would be selected.

The address assignment of each suffix is very important
factor in high utility of such memory architecture. There-
fore, the dimensions and the constraints of the memory
should be consider during the pattern partitioning process.

4.4 Suffix Comparator

Once the suffix is read from the ROM, the subsequent data
is pipelined and shifted to the lineup at the comparator as
in figure 13. Based on the length of the longest pattern and
ROM latencies, the number of pipeline stages are deter-
mined. The shifters are made with a single level of multi-
plexors or they are pipelined to multiple levels, depending
on the width of the input bus. Since one byte datapath has
only one alignment, no shifters are necessary.

MatchBit−wise
Compare

Shifter
(Multiplexor)

Suffix Length

Suffix

Data

Align

Figure 13: Suffix comparator: the incoming data is shifted
to the corresponding alignment. Then the suffix is com-
pared against aligned pattern.

In addition to suffix data, ROM must store the length of

each pattern. The length is decoded at the comparator to
only enable the comparators of the indicated length. Then
the memory output is compared with byte aligned packet
data. When the data matches the suffix, the prefix index
used as memory address is forwarded as an output to iden-
tify the detected pattern.

5 Implementation Results

We now present our implementation of 1-byte datapath
using a combination of the architectures in the previous
sections. By comparing with our previous designs and
other research works, we show that a 1-byte datapath with
a combination of decoder trees and ROM based detector
yields the smallest design with high bandwidth for use in
current network security devices.

There are a few key improvements we made to our current
design. In order to increase the clock rate of our design,
we pipeline the entire design to guarantee at most 1-level
of gate delay between two pipelined registers. This mod-
ification increases the D-flip flop usage. But since each
LUT is paired with one D-flip flop, the design does not
become much more complex. We also reduce the size of
the decoder filter by trimming the duplicate logic using the
keyword tree [1]. We increase the memory utilization by
partitioning the patterns according to the available space
in the memory.

For our design, we use the Snort rule set from end of
March 2004. There are 1,625 unique content patterns in
the entire set of 2,207 rules in Snort IDS. The total number
of bytes in the extract patterns is 20,800.

First, we implement the pattern set using only the recon-
figurable decoder architecture (sec 3). Since this design
only uses discrete gates, the number of gates is larger
than the memory based design. Accordingly, none of the
built-in memories in FPGA are used. Depending on the
application and the available FPGA devices, such design
choice may be preferable. Also, none of the gates in this
design have to be placed around a large, common, inter-
nal components such as block memory as in ROM based
filter. Since the design has fewer FPGA CAD placement
constraints, it is able to run at a slightly faster clock rate.

The full decoder based design successfully placed and
routed into a single Xilinx Spartan 3 - XC3S1500 device
using only 16,930 LUTs. The highest clock rate for the
design is 250 Mhz, making the bandwidth of our dynamic
pattern filter 2.0 Gbps.

As we mentioned earlier, the patterns assigned to the same
ROM must have unique prefixes. Given the fixed number
of available memory modules, some patterns may not par-

Index

Mem
Filter

FF E

Mem
Filter

Mem
Filter

FF E FF E

Index Index Index

Prefix
Decoder Tree

Pattern
Decoder Tree

Pattern ID

Figure 14: Combining Decoder Tree with Memory based
Pattern Search Module.

tition into any one because of the above constraint. Only
way to configure such patterns is by converting them into
decoder filters.

Due to larger resource requirements for the generic XOR
based comparators, smaller set of patterns often are more
efficiently implemented as a hardware decoder.

With these modifications, we generate the same pattern
search design that takes advantage of the best of the both
architectures. The block diagram of this compact design is
shown in figure 14. Since the prefixes for patterns stored
in the memory are essentially a set of shorter patterns, they
are combined with the rest of the patterns to yield an effi-
cient keyword tree.

Since large amounts of patterns are stored in the memory,
the overall design requires much less gates than the de-
coder based filter. As a result, the full filter successfully
placed and routed into a smaller Spartan 3 - XC3S400 de-
vice. The system uses total of 4,415 LUTs with a clock
rate of 200 Mhz in XC3S400 device and at 237 Mhz in
XC3S1000 device. The speed up in XC3S1000 device is
due to higher degree of freedom in placing the compo-
nents in the larger FPGA.

In the instances where pattern detection rate is low, it may
be sufficient to indicate a match signal without identify-
ing the pattern. Software can do a thorough search of the
database to determine which pattern was detected. For
such design all the index encoder for the decoder based
matcher can be replaced with tree of OR gates to reduce
the amount of gates. Due to our efficient index encoder
design, only 755 LUTs can be reclaimed from the first de-
sign and 65 LUTs for the memory based implementation.

6 Conclusion

To summarize, we tabulate our area and performance
numbers along with the most recent results from various
researches in Table 1. Due to our highly pipelined dat-
apath, our dynamic pattern search implementations with
8-bit input bus produce comparable performance as other
implementations with wider input.

Design Device BW
(Gbps)

of
Bytes

Total
Gates

Mem
(kb)

Gates/
Byte

Cho-MSmith
RDL+ROM

Spartan3
400* 1.60 20800 4415 162 0.21

Cho-MSmith
RDL+ROM

Spartan3
1000 1.90 20800 4415 162 0.21

Baker-Prasanna
USC Unary

Virtex2
Pro100 1.79 8263 2892 0 0.35

Cho-MSmith
Reconf-Decoder

Spartan3
1500 2.00 20800 16930 0 0.81

Sourdis et al.
Predecoded CAMs

Virtex2
3000 2.68 18031 19902 0 0.97

Clark-Schimmel
RDL based

Virtex
1000 0.80 17537 19698 0 1.10

Clark-Schimmel
RDL based

Virtex2
8000 1.86 17537 29281 0 1.70

Franklin-
Hutchings

VirtexE
2000 0.40 8003 20618 0 2.58

Gokhale et al.
CAM based

VirtexE
1000 2.18 640 ~9722 24 15.19

* The least expensive and the smallest FPGA for the equivalent application.

Table 1: Area and performance comparison table
[2, 17, 6, 10, 11]

Since most FPGAs are equipped with significant amount
of memory in addition to the logic gates, the gates per
pattern byte is a useful measure of the area efficiency of
such designs. As seen in the table, our implementation is
about 1.7 to 8 times more space efficient than other most
recently published result with similar bandwidth.

From doing further experiments, we find that scaling the
design into multiple byte datapath increases the area at a
rate well below the linear growth. This is due to additional
hardware saving when sub-patterns are reused in multiple
byte datapath.

On this paper, we present a compact intrusion detection
filter architecture that is suitable for inexpensive FPGAs
that are available today. The filter that detects all the Snort
NIDS patterns can be mapped on to a 400k FPGA de-
vice (Xilinx Spartan 3, XC3S400). Due to the fine-grain
pipeline, the design is able to run at a rate of 200MHz
despite the fact that nearly 99 % of available slices were
used. Since the filter can identify a pattern at every cycle,
its bandwidth can be sustained at 1.6 Gbps regardless of
the complexity of the input stream.

References

[1] Alfred V. Aho and Margaret J. Corasick. Efficient
String Matching: An Aid to Bibliographic Search. In
Communications of the ACM, pages 333–340. ACM
Press, June 1975.

[2] Zachary K. Baker and Viktor K. Prasanna. A
Methodology for Synthesis of Efficient Intrusion
Detection Systems on FPGAs. In IEEE Sympo-
sium on Field-Programmable Custom Computing
Machines, Napa Valley, CA, April 2004. IEEE.

[3] B. H. Bloom. Space/Time Trade-Offs in Hash Cod-
ing with Allowable Errors. In Communications of
the ACM. ACM, July 1970.

[4] Young H. Cho and William H. Mangione-Smith.
Deep Packet Filter with Dedicated Logic and Read
Only Memories. In IEEE Symposium on Field-
Programmable Custom Computing Machines, Napa
Valley, CA, April 2004. IEEE.

[5] Young H. Cho, Shiva Navab, and William H.
Mangione-Smith. Deep Network Packet Filter De-
sign for Reconfigurable Devices. In 12th Confer-
ence on Field Programmable Logic and Applica-
tions, pages 452–461, Montpellier, France, Septem-
ber 2002. Springer-Verlag.

[6] Christopher R. Clark and David E. Schimmel. Scal-
able Parallel Pattern-Matching on High-Speed Net-
works. In IEEE Symposium on Field-Programmable
Custom Computing Machines, Napa Valley, CA,
April 2004. IEEE.

[7] Neil Desi. Increasing Performance in High Speed
NIDS: A look at Snort’s Internals. Feb 2002.

[8] Sarang Dharmapurikar, Praveen Krishnamurthy,
Todd Sproull, and John Lockwood. Deep Packet In-
spection using Parallel Bloom Filters. In IEEE Hot
Interconnects 12, Stanford, CA, August 2003. IEEE
Computer Society Press.

[9] Ido Dubrawsky. Firewall Evolution - Deep Packet
Inspection. Infocus, July 2003.

[10] R. Franklin, D. Carver, and B. L. Hutchings. As-
sisting Network Intrusion Detection with Recon-
figurable Hardware. In Proceedings of the IEEE
Symposium on FPGA’s for Custom Computing Ma-
chines, Napa Valley, CA, April 2002. IEEE.

[11] M. Gokhale, D. Dubois, A. Dubois, M. Boorman,
S. Poole, and V. Hogsett. Granidt: Towards Gigabit
Rate Network Intrusion Detection Technology. In

12th Conference on Field Programmable Logic and
Applications, pages 404–413, Montpellier, France,
September 2002. Springer-Verlag.

[12] J.W. Lockwood, J. Moscola, M. Kulig, D. Reddick,
and T. Brooks. Internet Worm and Virus Protection
in Dynamically Reconfigurable Hardware. In Mil-
itary and Aerospace Programmable Logic Device
(MAPLD), Washington DC, September 2003. NASA
Office of Logic Design.

[13] J. Moscola, J. Lockwood, R.P. Loui, and M. Pachos.
Implementation of a Content-Scanning Module for
an Internet Firewall. In IEEE Symposium on Field-
Programmable Custom Computing Machines, Napa
Valley, CA, April 2003. IEEE.

[14] M. Roesch. Snort - Lightweight Intrusion Detection
for Networks. In USENIX LISA 1999 conference,
http://www.snort.org/, November 1999. USENIX.

[15] R. Sidhu and V. K. Prasanna. Fast Regular Expres-
sion Matching using FPGAs. In IEEE Symposium on
Field-Programmable Custom Computing Machines,
Napa Valley, CA, April 2001. IEEE.

[16] Ioannis Sourdis and Dionisios Pnevmatikatos. Fast,
Large-Scale String Match for a 10Gbps FPGA-
based Network Intrusion Detection System. In
13th Conference on Field Programmable Logic and
Applications, Lisbon, Portugal, September 2003.
Springer-Verlag.

[17] Ioannis Sourdis and Dionisios Pnevmatikatos. Pre-
decoded CAMs for Efficient and High-Speed NIDS
Pattern Matching. In IEEE Symposium on Field-
Programmable Custom Computing Machines, Napa
Valley, CA, April 2004. IEEE.

