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Abstract— Due to affordable broadband internet access, more
people are using the computer network to do their everyday
activities than ever. Due to minimal security measures provided
by the service providers, most internet users today are vulnerable
to several malicious attacks through web sites and e-mails.
In 2003, it has been estimated that computer network worms
and virus caused the loss of over $55B. Unless the security
systems use more advanced techniques to scan all the aspects
of the packets, the damage will likely to increase in the future.
While there are a few intrusion detection system running on
general purpose processors, they lack the processing power
to monitor gigabit networks. There have been a few research
projects that use reconfigurable devices to support these higher
speed networks. However, unlike the software solutions, the
reconfigurable implementations require longer time to apply the
updates to the signature set. We present a high performance
pattern matching co-processor architecture that can be used
to monitor and identify a large number of intrusion signature
without a need for hardware reconfiguration. The design consists
of a bank of pattern matchers that are used to implement a highly
concurrent filter. The pattern matchers can be programmed to
match multiple patterns of various lengths, and are able to
leverage the existing databases of threat signatures. We have been
able to program the filters to match all the payload patterns
defined in the widely used Snort network intrusion detection
system at a rate above 7 Gbps, with memory space left to
accommodate threat signatures that become available in the
future.

Index Terms— Network, Security, CAM, String, Search

I. I NTRODUCTION

Most firewalls today are equipped to examine the packet
headers only. Therefore, application layer network attacks
such as e-mail attachments can slip through the security
systems undetected. While e-mail lends itself to store and scan
techniques, such as those developed by anti-virus companies,
other applications (e.g. databases) may not.

One effective security measures for such attack is deep
packet inspection [1]. Deep packet inspection not only exam-
ines the packet headers but also the payload data. Therefore, a
security system that incorporates deep packet inspection offers
better protection from attacks than traditional firewalls.It is
evident that traditional firewalls that in much use today have
not been effective in differentiating network packets containing
worms from normal e-mails. However, deep packet inspection
system, such as Snort [2]–[4], can be configured to detect
several different worms by searching for specific patterns in
the network packet payload.
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A. Deep Packet Inspection

The Internet traffic is made of streams of fragmented packets
with different source and destination addresses. Since attack
can span more than one packet of a stream, every stream
needs to be reassembled before applying the deep packet
inspection. There are also some class of attacks that use
unconventional protocol features to confuse and avoid the
intrusion detection system. One such attack uses overlapping
fragmented IP packets. Such must be eliminated by normal-
ising the packets. Packet normalization produces consistantly
clean network traffic without abnormalities [5]. Figure 1 shows
the steps of an effective deep packet inspection.

Most of the currently available deep packet inspection
systems use one or more general purpose processors running
signature-based filtering software. Although these software
systems can be easily reconfigured to detect new attacks,
the underlying processor are not powerful enough to sustain
acceptable filtering rate on gigabit (and above) networks. For
example Snort, one of the most widely used software system,
when configured with 500 real string patterns can only sustain
a bandwidth less than 50 Mbps on a dual 1 Ghz Pentium 3
system.

Since the payload data is under the control of the user
application, all the patterns must be compared at every byte
of the payload during the search process. Therefore, as the
number of patterns in the software system increases, the
filtering process needs more processing power. We refer to
this pattern matching task as the dynamic inspection.

This exhaustive search process on general purpose processor
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is expensive and the current software solutions are impractical
for networks over 1 Gbps. Therefore, we have developed a
specialized pattern matching co-processor for the dynamic
pattern search.

In the following section, we briefly discuss how recent
developments on reconfigurable hardware allows deep packet
filtering on high bandwidth network. Then we present our
novel architecture for 1+ gigabit networks in section 3. In
section 4, we describe our initial pattern matcher capable of
detecting all the patterns defined in current Snort rule set.
Since the architecture does not require hardware reconfigu-
ration, our intial performance measurements are based on the
ASIC design using 0.18µm library. We expand our discussion
in section 5 by suggesting ways to utilize the network traffic
statistics to increase the engine performance. Finally, insection
6, we make our concluding statement.

II. RELATED WORK

Due to lack of performance in software systems, several re-
searchers have looked into developing special pattern matching
units in field programmable gate array (FPGA) devices.

Sidhu and Prasanna mapped Non-deterministic Finite Au-
tomata (NFA) for regular expression into FPGA to perform fast
pattern matching [6]. Subsequently, Franklin and Hutchings
implemented a pattern search engine in JHDL, based on a
subset of Snort IDS rules [7]. At around the same time, we
developed an FPGA filter that used 8-bit decoders to build
3.2 Gbps pattern match engine on FPGA [3]. Based on the
above concepts, Sourdis deepened the pipeline to increase the
filtering rate to 10 Gbps [8].

Our follow-up work and a similar JHDL based design by
Clark and Baker made contribution in reducing the size of
the design by eliminating duplicate logic [4], [9], [10]. Such
improvement allowed the decoder design to fit into a single
FPGA with performance of several gigabits per second

Gokale et al. of Los Alamos National Laboratory imple-
mented a fast re-programmable pattern search system using
content addressable memories (CAM) [11]. Although such
system does not require reconfiguration of FPGA, the low
performance of CAM limits the usefulness as well as the
number of mappable rules.

Dharmapurikarup et al. from Washington University pre-
sented an approximate method using Bloom filters [12]. They
detect the patterns at 600 Mbps with number of false positives
which is dependent on the number of rules as well as size of
the alotted memory. Their approach uses hashing, and ulti-
mately requires a secondary exact string comparison process
to detect false positives [13].

Our latest FPGA implementation that uses a combination of
8-bit decoders and read-only-memory to reduce the amount of
discrete gates by store partial information in the memory. The
logic savings is achieved by using the decoders to generate the
address for the partial pattern entry in a ROM. By balancing
the use of the discrete gates and memory, this yields the
highest performance per gate [4], [14].

Unlike the software solutions, many of the FPGA imple-
mentations performs at 1+ gigabit per second filtering rate.
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However, other than the CAM implementation [11] and the
bloom filter design [12], the FPGA design compilation and
reconfiguration time can be in the order of minutes to days.
Such delay in reconfiguration may not acceptable as new
worms are released to the network in higher frequency.

III. A RCHITECTURE

A Snort rule contains information to search through all
layers of network packets to detect a particular attack [2].
The most computationally intensive phase of the detection
process is an exhaustive string search on the packet payload.
We present a compact and programmable pattern search co-
processor for multi-gigabit per second network.

A. Pattern Detection Module

The basic pattern detection module (PDM) is shown in
figure 2. The function of the pattern detection module is to
efficiently detect segments of pattern using programmable hash
functions followed by discrete string comparison.

At every clock cycle the input pattern is hashed to generate
an index. The index is then used as an address of a memory
where the corresponding pattern is stored. The retrieved pat-
tern from the memory is then compared with the input pattern
to determine whether the pattern is an exact match. When
there is a match, the index can be forwarded with an unique
identifier for the pattern.

We use parametrized and cascaded hardware so that the
length of the patterns are not fixed. Therefore, the maximum
length of the input bytes that is used to generate the hashed
index is the minimum length of the patterns detectable by
a single PDM. Moreover, the maximum range of the hashed
index determines the maximum entries that can be stored in
the memory. For instance, if two byes of the input pattern are
hashed to generate the index, the PDM can be configured to
detect maximum of 65,536 patterns with the minimum length
of two bytes.

1) Hashed Index:Hashing the substrings in a static position
places a constraint on which patterns can be detected by one
PDM. If the first two bytes of all the patterns are used for
generating the index, some would have the same hash value
and could not be stored in the same PDM. For higher resource
utilization, we allow the index to be generated by any substring
of the pattern.

In practice, each pattern consists of more than one unique
substring. By allowing the hash function to start at different



3

1

1

0

1

0

1

0

1

0

Index

0

DecoderOffset

n 0n−1

Fig. 3. Switched Pipeline

byte offsets of the pattern, the PDM memory utilization can
be improved. Therefore, the byte offset data is stored with
the pattern information in the memory. Using the offset and
the pattern length, the input pattern is shifted and compared
against the target pattern as shown in figure 2.

Since the index is generated from a substring of the pattern
at a different offset, the timing of the identification index
output may not indicate the starting byte of the pattern. By
using the offset value with the switched pipeline as the one
shown in figure 3, the index output timing can be adjusted to
correspond with the start of the pattern.

2) Prioritized Parallel Modules:Some patterns, especially
the ones with a small set of unique substrings, cannot be
mapped on to the same PDM module because the entries for
their hashed indices might be used by another pattern (e.g.
pattern that is made of all zeros). Therefore, more than one
PDM must run in parallel to detect multiple patterns with equal
hashed values.

In order to increase memory utilization, each PDM can have
different sized memory and logic based on a range of target
patterns. To maintain consistent output timing for the parallel
modules, smaller PDMs may need extra stages of pipeline to
match with longest PDM.

If the PDMs are configured to examine the same data
simultaneously, in most cases, only one PDM will output a
valid index for a pattern match. By extending the output bits
to indicate its module number, the outputs from the parallel
PDMs can be merged to produce one index output.

Depending on the memory content of the PDMs, more than
one PDM can output valid indices at a given cycle. Multiple
detections occur if one pattern is a substring, starting with
the first byte, of another pattern. We refer to such patterns as
“overlapping patterns.” When more than one index is detected
in the same cycle, it is sufficient to output the index for the
longest pattern since it also indicates the detection of the
shorter patterns.

The figure 4 represents the parallel PDMs with priority
support. Our design use chains of multiplexors to assign the
priorities as well as merge the PDM outputs. By storing
the longer of any conflicting patterns in the PDM with the
higher priority, the system is capable of detecting of all the
overlapping patterns.

The above PDM architecture allows the detection of patterns
of lengths that are less than or equal to that of the widest
memory module from all the PDMs. We refer to such pattern
as “short pattern.”
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B. Long Pattern State Machine

For applications such as Snort, where some patterns are
long, it is not efficient to have the PDM with memory wide
enough to store those patterns. In this section, we describe
another component that uses PDMs to detect patterns that are
longer than the width of PDM memories.

1) Sequence of Segments:Every long pattern can be broken
into several short pattern segments. If we match the order and
the timing of the segment sequence, we can effectively detect
the corresponding long pattern.

As in figure 5, the long pattern is divided into smaller
segments that fit in to a specific PDM. These segments are
stored in the PDMs along with a flag bit that indicates that
it is a segment of a long pattern. The detected indices are
forwarded to the long pattern state machine (LPSM).

2) Programmable State Machine:The LPSM examines the
sequence of segment indices for the correct ordering and the
timing to detect the corresponding long pattern.

As shown in figure 6, the LPSM is consists of the memory
and the pipeline similar to that of PDM. Unlike the PDM, the
memory only contains information for the current and the next
“state”. Each state is expressed as number which is based on
the index of the pattern segments detected by the PDMs.

The memory entry in LPSM with the state information is
loaded using part of the index identified by the PDMs. The
rest of the bits for the index are stored in the memory to verify
the current state. The entry also has a type field that indicates
whether the current index is the first, the middle, or the last
segment of the long pattern. The entry also specifies what the
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next state is and when it is expected to be detected by the
PDMs.

The sequence matching process is only initiated when the
type of the current state indicates that it is the start of a
long pattern segment. The expected next state is forwarded
to the switched pipeline like the one used in PDM to add
the appropriate delay. When the next index reaches the end
of the pipeline, it is compared with the actual current stateto
determine whether there was a match.

When the previous next state is an exact match of the current
state at the end of the pipeline, the expected next state is for-
warded in to the pipeline as before. If the expected next state
does not match the current state, this process is terminated
without any output. Otherwise, the process continues untilthe
current state is specified as the last segment of the long pattern.
Then the last matching index is forwarded as an index for the
detected long pattern.

3) Parallel LPSM: Depending on the depth of the LPSM
memory and the long pattern indices, more than one entry
maybe necessary for the same address. In order to address
this, more than one LPSM can run in parallel to detect more
than one sequence of states.

In order to interoperate between the LPSMs, the match bit
is forwarded to the modules that contain all the corresponding
next state for the current state. When any of the LPSM receives
the match bit, its expected next state is forwarded to the
pipeline regardless of the result in its own comparator.

C. System Integration and Features

Figure 7 is a simplified block diagram of our dynamic deep
packet inspection system. As shown in the figure, the short
patterns can be detected using only the PDM whereas the
long patterns are detected using both the PDM and the LPSM
modules.

Unlike the FPGA designs, which required functional circuit
changes, this design only requires updating memory values.
Therefore, the above system takes much less time to update
the inspection rule set than the systems that require changes
in hardware.
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1) Reusing Memory Entries:Since the multiple index se-
quences can be tracked by the parallel LPSMs, they can be
programmed to reuse pattern segments that appear in more
than one pattern. By reusing the pattern segments for more
than one pattern, the memory requirement for PDM can be
reduced.

Aho and Corasick’s keyword tree [15] is used in many ef-
ficient software pattern search algorithms, including the Snort
IDS [16]. This algorithm is used in the FPGA implementation
to reduce the hardware area [4]. We also apply the algorithm
to configure the PDM memories.

A keyword tree in figure 8 is one way to store a set of
patterns into an optimized tree of common keywords. The
conversion not only reduces the amount of required storage,
but also narrows the number of potential patterns as the pattern
search algorithm traverses the tree.

First, the pattern set must be analyzed to form the keyword
trees. Once the keyword trees are generated, its keywords
are stored as pattern segments in the PDMs and the edges
are stored as the state transitions in the parallel LPSMs.
This optimization allows the duplicate pattern segments tobe
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collapsed into a single segment to save PDM memory space.
2) Regular Expression:In addition to keeping track of

multiple long patterns, the parallel LPSMs can be programmed
to detect regular expressions.

Regular expression can be represented in the form of NFA
[6], [7]. Once the NFA representation is formed from regular
expression, it can be mapped on to our design. All the inputs
to the NFA are recognized by the PDMs while the transition
from each node can be mapped on the parallel LPSMs. For
the same current state entry, each LPSM can point to the next
state that is the next node of the NFA. In similar fashion, the
often more compact DFAs can also be mapped in to the design
memory [17].

For instance, the node with edges that points to it self and
to another node, as shown in figure 9, can be mapped such
that the next state stored in one LPSM is the same index as
the current state while another LPSM would have next state
index that points to the second other node.

IV. SNORT IMPLEMENTATION

Snort is one of the most widely used network intrusion
detection system (NIDS) that uses deep packet inspection. It
is open source software that can be configured with the set of
signatures that are used to identify network attacks. In June
2004, the Snort rule set contained 1,729 string patterns that
should to be searched dynamically in the network payload. To
evaluate the effectiveness of our architecture, we implement
the filter based on the architecture to support the entire Snort
rule set. Our design contains additional memory space for
flexible configuration in the face of new attacks.

A. Hardware Configuration

The dimension of the memories, the number of PDMs, the
number of LPSMs, and the hash functions are the architecture
parameters. These parameters allow the designer to customize

the filter for a given threat profile. Depending on the pattern
set, the parameters of the architecture may differ dramatically
to optimize the resource utilization. For example, the designer
may decide that LPSMs are unnecessary if all the target
patterns are short and uniform in length. On the other hand,
the designer may choose to have small PDM followed by
many parallel LPSMs if the patterns consists of repetitive set
of common substrings.

Determining the parameters of the architecture is a complex
process which effects the behavior of the system. However,
this process is beyond the scope of this paper. Therefore,
we attempt to describe one system we have implemented to
successfully map the entire Snort rules.

1) PDM Parameters:The length of the patterns range from
1 to 122 bytes in Snort rule set. The contents of the patterns
vary from binary sequences to ASCII strings. Therefore, we
design the filter to support patterns of various lengths as
well as the content. For the pattern set, using different size
memories in the PDMs can increase the memory utilization
and decrease the logic area. However, we choose to set the
dimension of all the PDM to be same to simplify of the design
process.

The dimension of the memory in each PDM is 146 bits
by 512 entries. The memory is wide enough to store all the
information necessary to detect up to 17 bytes long pattern.In
our filter, eight of these PDM units are connected in parallel
to provide 8-levels of priority.

The filter takes two consecutive input bytes to generate the
9 bit address for the PDM memories. As we mentioned in the
architecture description, the minimum pattern length for our
filter, therefore, is 2 bytes long. Since single byte patterncan
be more efficiently detected using byte decoders, we do not
map them on the filter.

The hash function logic consists of series of multiplexors
to independently choose any 9 bits of the 16 bits. The hash
logic in each PDM are individually configurable to give more
flexibility for the programmer.

2) LPSM Parameters:The design consists of eight units of
LPSMs, each with 29 bit by 512 memory entries. Although
we found that 256 memory entries per LPSM is sufficient to
completely map the entire Snort contents, we use the bigger
memory for easier filter programming in the future. Since each
LPSM can match different sequence of pattern, the design is
capable of reusing one short pattern segment up to eight times.

In order to save memory space, the hashing logic for LPSM
uses portion of index bits to load the state information. The
index bits 11 through 2 are directly connected to the address
of the memory while the rest of the bits are, later, matched
with the memory content.

B. Pattern Software

Once the hardware parameters are set, the resulting datapath
can be programmed using several different algorithms. De-
pending on the complexity of the algorithms and the patterns,
there can be a big difference in compilation time as well as
the program size. In general, reducing the size of the program
takes longer compilation time. However, smaller program tend
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Let P = set of all patterns 
 S = set of all pattern segments 
 L = maximum length of patterns for a PDM 
 M = minimum length of patterns for a PDM 
 
1. Sort the order of patterns in P from the shortest to 
 the longest length. 
 

2. For each patterns in P with length <= L: 
 

 a. Combine all the duplicate patterns 
 b. Insert all the unique patterns into a new set S  
 

3. For each patterns in P with length > L: 
 

 a. Divide the pattern into segments of length L 
 

 b. If the length of the last segment of the pattern 
  is less than M: 
 

  - Add (L – the segment length) bytes of the 
   previous segment at the front of the last 
 

 c. Compare with S to combine duplicate patterns 
 

 d. Insert all the new segments into the set S 
 

4. Compare the last segments with the other elements 
 in the set S: 
 

 a. Avoid assigning overlapping pattern as the last 
  segment by adding or subtracting bytes of the 
  second to last segment to the front 
 

 b. If not possible, make sure the last segment is 
  the longest of all the overlapping segments 

Let P = set of all patterns 
 S = set of all pattern segments 
 L = maximum length of patterns for a PDM 
 M = minimum length of patterns for a PDM 
 
1. Sort the order of patterns in P from the shortest to 
 the longest length. 
 

2. For each patterns in P with length <= L: 
 

 a. Combine all the duplicate patterns 
 b. Insert all the unique patterns into a new set S  
 

3. For each patterns in P with length > L: 
 

 a. Divide the pattern into segments of length L 
 

 b. If the length of the last segment of the pattern 
  is less than M: 
 

  - Add (L – the segment length) bytes of the 
   previous segment at the front of the last 
 

 c. Compare with S to combine duplicate patterns 
 

 d. Insert all the new segments into the set S 
 

4. Compare the last segments with the other elements 
 in the set S: 
 

 a. Avoid assigning overlapping pattern as the last 
  segment by adding or subtracting bytes of the 
  second to last segment to the front 
 

 b. If not possible, make sure the last segment is 
  the longest of all the overlapping segments 

Fig. 10. A simple algorithm to divide patterns for PDMs

to yield cleaner indexing result. The system performance stays
constant, regardless the size of the program.

Due to variety of possible algorithms and optimizations that
can be applied to program the filter, we believe this step is also
beyond the scope of this paper. Therefore, we present a few
direct and effective algorithms used to map the entire pattern
set defined in the Snort rules.

1) Pattern Preprocessing:For the above hardware, the long
patterns must be broken into shorter segments of 17 bytes
or less. Due to the priorities assigned to the PDM units, the
short patterns do not have to be unique. However, eliminating
duplicate patterns would save memory space. In order to
identify each pattern with an unique index, the last segment
of every pattern must be different.

We use the algorithm described in figure 10 to break the
long patterns into smaller segments that fit in the PDMs. The
algorithm produces a list of segments containing overlapping
patterns. The overlapping patterns can assert detections in
several PDMs in a single cycle. By assigning higher priorityto
the longer of any two overlapping patterns, the detection ofthe
longer index also indicates the detection of shorter patterns.
There is no need for priority for the non-overlapping patterns.

If any segment of the long pattern is an overlapping pattern,
it must have the highest priority. Such priority is automatically
assigned when the algorithm divides the pattern into maximum
lengthed segments.

Once the list of pattern segments are generated, it can be
used to generate index sequences for all the long patterns.
When the long patterns are divided into smaller segments, the
corresponding sequence of segment identifiers are recorded

Let S = set of all preprocessed pattern segments 
 
1. Sort the order of patterns in S: 
 

 a. Sort according to the priority, from the highest 
  to the lowest 
 b. For the patterns with the same priority, sort  
  according to length, from longest to shortest 
 c. For the patterns without any priority, sort 
  according to length, from the longest to shortest 
 

2. Set hashing function parameters for each PDMs  
 

3. For each pattern in S with priority, starting with the 
 first of the set: 
 

 a. Generate indices using hash function for the  
  PDM, taking two consecutive bytes at a time 
 b. Map all the patterns into the PDMs: 
  - The overlapping patterns must be mapped 
   into correct PDMs according to their priority 

- If the entries for all the indices are not free, 
 change the target PDM and go to step 3a 

 c. If all PDMs are attempted, change the PDM 
  hash parameters, reset memory, go to step 3 
 

4. For each pattern in S without priority, starting with 
 the longest pattern: 
 

 a. Generate indices using hash function for the 
  PDM, taking two consecutive bytes at a time 
 b. Map all the patterns into the PDMs: 
  - If the entries for all the indices are not free, 
   change the target PDM and go to step 4a 
 c. If all the PDMs are attempted, change the PDM 
  hash parameters, reset memory, go to step 3 

Let S = set of all preprocessed pattern segments 
 
1. Sort the order of patterns in S: 
 

 a. Sort according to the priority, from the highest 
  to the lowest 
 b. For the patterns with the same priority, sort  
  according to length, from longest to shortest 
 c. For the patterns without any priority, sort 
  according to length, from the longest to shortest 
 

2. Set hashing function parameters for each PDMs  
 

3. For each pattern in S with priority, starting with the 
 first of the set: 
 

 a. Generate indices using hash function for the  
  PDM, taking two consecutive bytes at a time 
 b. Map all the patterns into the PDMs: 
  - The overlapping patterns must be mapped 
   into correct PDMs according to their priority 

- If the entries for all the indices are not free, 
 change the target PDM and go to step 3a 

 c. If all PDMs are attempted, change the PDM 
  hash parameters, reset memory, go to step 3 
 

4. For each pattern in S without priority, starting with 
 the longest pattern: 
 

 a. Generate indices using hash function for the 
  PDM, taking two consecutive bytes at a time 
 b. Map all the patterns into the PDMs: 
  - If the entries for all the indices are not free, 
   change the target PDM and go to step 4a 
 c. If all the PDMs are attempted, change the PDM 
  hash parameters, reset memory, go to step 3 

Fig. 11. A simple algorithm to map the preprocessed segmentsinto PDMs

along with the time delay between subsequent segments and
the type flags. These data are programmed into LPSM to keep
track of the long patterns.

2) Programming the Filter:All the PDMs and the LPSMs
are memory mapped. As far as the programmer is concerned,
the filter can look like a large memory. The parameters of
the hash functions can be also treated as a memory mapped
location. Our implementation uses two ports to program the
filter, one for the memory modules in the PDMs and LPSMs
and the other for programming hash functions.

Before the filter is programmed, the data for the pattern
matching modules must be mapped on to a virtual filter with
same configuration. The mapping procedure is necessary to
determine exact address locations for all data. Once the data is
correctly mapped in to the virtual memory space, programming
the filter is equivalent to writing into a memory.

The list of pattern segments, their length, and the control
information from the preprocessing step are mapped on to
the PDMs. Our mapper uses an algorithm in figure 11 to
incrementally fill the PDM memory according to the pattern
segment priority and the hash value. If the hash function fails
to map the patterns, it simply changes the hashing parameters
to re-map the patterns.

These simple algorithm mapped the entire Snort on to our
initial implementation. However, the segments were not evenly
distributed into all the memory modules. A better algorithm
can use the distribution of the patterns in the memory and the
frequency of possible indices for each pattern to efficiently
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Module Area Units×Area Cr-path

PDM Logic 0.075mm2 0.600mm2 <1.0 ns
LPSM Logic 0.024mm2 0.188mm2 <1.0 ns
PDM Mem 0.844mm2 6.752mm2 1.12 ns
LPSM Mem 0.168mm2 1.342mm2 1.12 ns

DPF Filter - 8.882mm2 1.12 ns

TABLE I

ASIC DESIGN AREA OF THE FILTER USING0.18µm TECHNOLOGY

map the pattern. Such mapping analysis will take longer
execution time.

The sequences of indices and other control fields are
mapped on to the LPSMs. Each index is mapped on to one
LPSM pointing to one or more LPSMs that matches the
corresponding next index. If there are patterns with same
beginning indices, the programmer can choose to use only one
LPSM to keep track of all the patterns until it branches off
to different patterns. This optimization will allow the unused
entries of the LPSMs to be used for other sequence of patterns.

After the data is successfully mapped on to the virtual filter,
the memory values can be directly copied in to the filter
memories.

C. Results

The hardware design is written in structural verilog and the
programmer is written in C++. As described in the previous
sections, the hardware is composed of 8 parallel units of PDMs
and 8 parallel units of LPSMs.

As of June 2004, there are total of 1,729 unique patterns
with lengths 2 to 122 bytes in Snort NIDS. The total number
of bytes that the filter need to compare are 22,340 bytes. Using
the simple algorithms, the programmer successfully configured
the hardware to filter the entire set of patterns.

The pattern mapping would be more efficient if the memory
usage distribution and the index information of patterns are
used. Although our algorithm does not consider them in during
the mapping process, the hardware still proved to be robust
enough to store the rule set.

During the programming process, 374 long patterns are
transformed into 752 short pattern segments; making the total
number of patterns for the PDMs 2,107. Along with the
segments, the LPSMs are programmed to make up to 7 state
transitions.

The entire pattern set occupies approximately 50% of the
PDM and 18% of LPSM memory, leaving enough space many
additional patterns. In fact, given a complex algorithm that
reuses duplicate substring, the filter can have more than double
the number of patterns defined in the Snort NIDS.

On an AMD Athlon XP 1800+ processor under cygwin,
the total runtime of the programmer to process and map
the patterns into the virtual memory space is 771 msec. We
generated the memory modules in Verilog with the contents
of the virtual memory to verify our design in simulation
environments.

We synthesized and routed the filter in ASIC using 0.18µm

technology in Cadence Synopsis tools. As shown in table I,

Design Device 
BW 

(Gbps) 
# of 

Bytes 
Total 
Gates 

Mem 
(kb) 

Gates 
Byte 

Cho-MSmith 
RDL+ROM 

Virtex 4 
LX15 

2.65 22340 4690 162 0.21 

Baker-Prasanna 
USC Unary 

Virtex2 
Pro100 

1.79 8263 2892 ‡ 0 > 0.35 

Cho-MSmith 
ASIC SRAM 

ASIC 7.14 * 22340 † 11163 864 0.50 

Cho-MSmith 
Decoder 

Spartan3 
1500 2.00 20800 16930 0 0.81 

Sourdis et al. 
Pred. CAM 

Virtex2 
3000 

2.68 18031 19902 0 0.97 

Clark-Schimmel 
RDL based 

Virtex 
1000 

0.80 17537 19698 0 1.10 

Franklin- 
Hutchings 

VirtexE 
2000 0.40 8003 20618 0 2.58 

Gokhale et al. 
CAM 

VirtexE 
1000 

2.18 640 ~9722 24 15.19 

* Bandwidth measured from ASIC design using 0.18� m library 
†  Patterns are using only about half of the maximum capacity of the filter 
‡  Logic resource for the pattern index encoder is not accounted 

 
TABLE II

PATTERN FILTER COMPARISONCHART [3], [7], [9]–[11], [14], [18]

the area and the critical path is limited to the memory modules
in the design. The area for the processing modules account for
less than 9% of the entire design while the rest of the area is
occupied by the memory modules.

The critical path for the entire design is dictated by the
memory which can run at a speed of 893 Mhz. Since the filter
input can consume 1 byte of data at each cycle, the bandwidth
of the filter is 7.144 Gbps.

Table II compares the FPGA resources needed for the filter
against other recent pattern filters built using FPGAs. The
new design is indicated as ASIC SRAM. With Snort NIDS
patterns, our ASIC filter’s gates per byte is relative comparable
to the smallest design in FPGA. However, only half of the
filter capacity is utilized with Snort NIDS. By applying new
programming algorithm and adding new patterns to the set,
the gates per byte may possibly decrease to below the smallest
design.

V. PARALLEL STREAM SCANNER

In practice, the network traffic can be divided into seperate
streams based on the packet information. For instance, ac-
cording to study conducted by MCI in 1997, approximately
70% of the Internet traffic accounts for web transactions which
uses port 80 under TCP/IP [19]. Using the static header
information, two independent data streams can be formed by
seperating all the web traffic from the rest. Accordingly, the
rule set can be divided into two sets for use in two parallel
filters to scan each stream. Therefore, under normal network
traffic condition, one can expect bandwidth to increase by
43%. If the web traffic accounts for 50% the same hardware
would be able to filter at two times the rate.
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Fig. 12. Parallel Stream Scanner is composed of packet classifier followed
by parallel pattern matching units.

A. Packet Classifier

If the network traffic statistic is available, we can struc-
ture our filters based on the information to increase the
performance. As the Internet example suggests, our approach
divides the network traffic as well as the pattern matching
unit according to the traffic statistics to effectively increase
the performance by scanning several independent streams in
parallel.

Figure 12 shows the architecture that parallelizes the pattern
detection process in terms of streams. The packet classifier
examines the static information of the packet to de-multiplex
the packets to appropriate pattern match engine. Given N-
parallel pattern matching units, the packet classifier mustde-
multiplex the data at N times the filtering rate of individual
pattern matching unit. Since the classifier does not have to
classify the packet for every byte, its bandwidth can be
multiplied by widening the input data bus.

B. Pattern Matching Units

Each output of the de-multiplexor will be at a higher
bandwidth than the individual pattern matching unit can filter.
However, if we assume the traffic statistic holds true, the traffic
load should be divided equally among all the pattern matching
units. Therefore, we can reduce the output bandwidth of the
de-multiplexor to match the maximum filtering rate of each
pattern matching unit by using a small FIFO.

As network packets are classified according to the statistics,
the rule set need to be assigned to different pattern matching
unit. Then, each pattern matching unit can be smaller than the
original engine because of the smaller rule set. By analyzing
the target network and the rule set, the sizes for each unit can
be determined to optimize the space and performance.

C. Summary

Table I shows that the memory accounts for 91% of the
total die area in our initial implementation. Since memory in
each pattern matching unit will be adjusted according to the
rule set size, the entire design size will be increased due to
redundant hashing logic, packet classifier, and the additional
FIFOs.

When the network traffic load is balanced equaly over all
the matching units, the maximum bandwidth of the entire filter
is multiplied by the number of the units. On the other hand,
when the traffic is not distributed evenly, only one unit may be
doing all the work, thus making the minimum bandwidth to
equal the filtering rate of one unit. For example, if our initial
pattern matching unit was successfully divided into 4 smaller
units, the maximum bandwidth of the system would be 28.576
Gbps whereas the minimum bandwidth will equal to the initial
implementation of 7.144 Gbps.

VI. CONCLUSION

In this paper we describe a novel architecture for pattern
matching co-processor for network intrusion detection system.
The co-processor is RAM-based design that is programmable
using the list of substrings and the state transistions. Itseffi-
cient pattern matching engine is capable of filtering the multi-
ple gigabit network traffic. Since the patterns are programmed
by changing the contents of the RAM, the architecture can be
used to implement designs in FPGA as well as ASIC.

We have shown that our pattern filter is capable of yielding
performance that surpasses the most recent FPGA imple-
mentations while enabling the users to program it without
having to regenrate and reconfigure the hardware. Such quick
configuration may become critical, as the rate of emergence
of new attack increase.

We further developed our architecture by presenting a
simple structural modification to the initial design to obtain
higher bandwidth. By effectively dividing the network traffic
based on the network statistic, we show that the maximum
bandwidth of the new design can be multiplied by the number
of smaller parallel units.
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