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Abstract— Due to affordable broadband internet access, more i Fragmented
people are using the computer network to do their everyday vy  Packets
activities than ever. Due to minimal security measures proied Packet

by the service providers, most internet users today are vularable

to several malicious attacks through web sites and e-mails. Normalizer| Normalizec

In 2003, it has been estimated that computer network worms * Packets
and virus caused the loss of over $55B. Unless the security [Header] Payl oad ]
systems use more advanced techniques to scan all the aspects

of the packets, the damage will likely to increase in the futte. - -
While there are a few intrusion detection system running on Static Dynamic
general purpose processors, they lack the processing power Inspection Inspection
to monitor gigabit networks. There have been a few research * *

projects that use reconfigurable devices to support these giner Packet

speed networks. However, unlike the software solutions, th .
reconfigurable implementations require longer time to appy the Filter

updates to the signature set. We present a high performance Safe
pattern matching co-processor architecture that can be usk Packets

to monitor and identify a large number of intrusion signature
without a need for hardware reconfiguration. The design conists
of a bank of pattern matchers that are used to implement a higly
concurrent filter. The pattern matchers can be programmed to
match multiple patterns of various lengths, and are able to
leverage the existing databases of threat signatures. Wevebeen A, Deep Packet Inspection

able to program the filters to match all the payload patterns

defined in the widely used Snort network intrusion detection The Internet traffic is made of streams of fragmented packets

system at a rate above 7 Gbps, with memory space left to \ith different source and destination addresses. Sineelatt
;ﬁ(l:]?gwmodate threat signatures that become available in the can span more than one packet of a stream, every stream
' needs to be reassembled before applying the deep packet
Index Terms—Network, Security, CAM, String, Search inspection. There are also some class of attacks that use
unconventional protocol features to confuse and avoid the
intrusion detection system. One such attack uses overlgppi
fragmented IP packets. Such must be eliminated by normal-
Most firewalls today are equipped to examine the packising the packets. Packet normalization produces comsigta
headers only. Therefore, application layer network agacklean network traffic without abnormalities [5]. Figure bals
such as e-mail attachments can slip through the secuiiipg steps of an effective deep packet inspection.
systems undetected. While e-mail lends itself to store aad s Most of the currently available deep packet inspection
techniques, such as those developed by anti-virus congangystems use one or more general purpose processors running
other applications (e.g. databases) may not. signature-based filtering software. Although these saftwa
One effective security measures for such attack is desystems can be easily reconfigured to detect new attacks,
packet inspection [1]. Deep packet inspection not only exartihe underlying processor are not powerful enough to sustain
ines the packet headers but also the payload data. Therafor@cceptable filtering rate on gigabit (and above) networks. F
security system that incorporates deep packet inspectierso example Snort, one of the most widely used software system,
better protection from attacks than traditional firewaltsis when configured with 500 real string patterns can only sostai
evident that traditional firewalls that in much use todayeéhava bandwidth less than 50 Mbps on a dual 1 Ghz Pentium 3
not been effective in differentiating network packets eiming system.
worms from normal e-mails. However, deep packet inspectionSince the payload data is under the control of the user
system, such as Snort [2]-[4], can be configured to detegdplication, all the patterns must be compared at every byte
several different worms by searching for specific pattems of the payload during the search process. Therefore, as the
the network packet payload. number of patterns in the software system increases, the
filtering process needs more processing power. We refer to
This research work was supported under NSF grant #CCR-02201 this pattern matching task as the dynamic inspection.
This exhaustive search process on general purpose processo

Fig. 1. Deep Packet Inspection

I. INTRODUCTION



Detectec
Pattern

is expensive and the current software solutions are imigedct Index
for networks over 1 Gbps. Therefore, we have developed a

A 4

specialized pattern matching co-processor for the dynamic Index
pattern search. —» Hash Memory F;ittern Match

In the following section, we briefly discuss how recent Offset Signal
developments on reconfigurable hardware allows deep packef
filtering on high bandwidth network. Then we present our » Shifter |
novel architecture for 1+ gigabit networks in section 3. In Input Pattern Aligned Pattern

section 4, we describe our initial pattern matcher capable o _
detecting all the patterns defined in current Snort rule s&t9- 2+ Pattern Detection Module
Since the architecture does not require hardware reconfigu-

ration, our intial performance measurements are basedeon
ASIC design using 0.18n library. We expand our discussion
in section 5 by suggesting ways to utilize the network traffi
statistics to increase the engine performance. Finallseation
6, we make our concluding statement.

It—Powever, other than the CAM implementation [11] and the

%Ioom filter design [12], the FPGA design compilation and

reconfiguration time can be in the order of minutes to days.
Such delay in reconfiguration may not acceptable as new
worms are released to the network in higher frequency.

Il. RELATED WORK Ill. ARCHITECTURE

Due to lack of performance in software systems, several ré-p gnort rule contains information to search through all
searchers have looked into developing special patternmmaiC |5 ers of network packets to detect a particular attack [2].

units in field programmable gate array (FPGA) devices.  1he most computationally intensive phase of the detection
Sidhu and Prasanna mapped Non-deterministic Finite Aizqcess is an exhaustive string search on the packet payload

tomata (NFA) for regular expression into FPGA to perform fagye present a compact and programmable pattern search co-
pattern matching [6]. Subsequently, Franklin and HUtCh'“%rocessor for multi-gigabit per second network.
implemented a pattern search engine in JHDL, based on a

subset of Snort IDS rules [7]. At around the same time, we _

developed an FPGA filter that used 8-bit decoders to buiftt Pattern Detection Module

3.2 Gbps pattern match engine on FPGA [3]. Based on theThe basic pattern detection module (PDM) is shown in
above concepts, Sourdis deepened the pipeline to increasefigure 2. The function of the pattern detection module is to
filtering rate to 10 Gbps [8]. efficiently detect segments of pattern using programmeadisé h

Our follow-up work and a similar JHDL based design byunctions followed by discrete string comparison.

Clark and Baker made contribution in reducing the size of At every clock cycle the input pattern is hashed to generate
the design by eliminating duplicate logic [4], [9], [10]. Su an index. The index is then used as an address of a memory
improvement allowed the decoder design to fit into a singiehere the corresponding pattern is stored. The retrievéd pa
FPGA with performance of several gigabits per second  tern from the memory is then compared with the input pattern

Gokale et al. of Los Alamos National Laboratory impleto determine whether the pattern is an exact match. When
mented a fast re-programmable pattern search system ushmgre is a match, the index can be forwarded with an unique
content addressable memories (CAM) [11]. Although sudbentifier for the pattern.
system does not require reconfiguration of FPGA, the lowWe use parametrized and cascaded hardware so that the
performance of CAM limits the usefulness as well as thength of the patterns are not fixed. Therefore, the maximum
number of mappable rules. length of the input bytes that is used to generate the hashed

Dharmapurikarup et al. from Washington University preindex is the minimum length of the patterns detectable by
sented an approximate method using Bloom filters [12]. Theysingle PDM. Moreover, the maximum range of the hashed
detect the patterns at 600 Mbps with number of false positivindex determines the maximum entries that can be stored in
which is dependent on the number of rules as well as sizetbe memory. For instance, if two byes of the input pattern are
the alotted memory. Their approach uses hashing, and ultashed to generate the index, the PDM can be configured to
mately requires a secondary exact string comparison psocdstect maximum of 65,536 patterns with the minimum length
to detect false positives [13]. of two bytes.

Our latest FPGA implementation that uses a combination of1) Hashed IndexHashing the substrings in a static position
8-bit decoders and read-only-memory to reduce the amountpldices a constraint on which patterns can be detected by one
discrete gates by store partial information in the memohe T PDM. If the first two bytes of all the patterns are used for
logic savings is achieved by using the decoders to gendrate generating the index, some would have the same hash value
address for the partial pattern entry in a ROM. By balancirand could not be stored in the same PDM. For higher resource
the use of the discrete gates and memory, this yields th#lization, we allow the index to be generated by any siitgtr
highest performance per gate [4], [14]. of the pattern.

Unlike the software solutions, many of the FPGA imple- In practice, each pattern consists of more than one unique
mentations performs at 1+ gigabit per second filtering ratsubstring. By allowing the hash function to start at diffdre
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Fig. 3. Switched Pipeline

Index with
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byte offsets of the pattern, the PDM memory utilization can

be improved. Therefore, the byte offset data is stored withy. 4. Parallel PDMs with priority

the pattern information in the memory. Using the offset and

the pattern length, the input pattern is shifted and comgpare _ Index A IndexB  IndexC  Index D

against the target pattern as shown in figure 2. ‘THE pATTEFN THAT IS Tod LONG TO an IN A pDM‘
Since the index is generated from a substring of the pattern— o

at a different offset, the timing of the identification index

output may not indicate the starting byte of the pattern. BWnput

using the offset value with the switched pipeline as the Orgtream
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shown in figure 3, the index output timing can be adjusted ! - : . PDMs
correspond with the start of the pattern. ! Priority Multiplexor |
2) Prioritized Parallel Modules:Some patterns, especially R TR o ndex .

the ones with a small set of unique substrings, cannot be
mapped on to the same PDM module because the entriesljior5
their hashed indices might be used by another pattern (ep&iws'
pattern that is made of all zeros). Therefore, more than one
PDM must run in parallel to detect multiple patterns with &iqu
hashed values. B. Long Pattern State Machine

In order to increase memory utilization, each PDM can haveFor applications such as Snort, where some patterns are
different sized memory and logic based on a range of tardehg, it is not efficient to have the PDM with memory wide
patterns. To maintain consistent output timing for the fpalra enough to store those patterns. In this section, we describe
modules, smaller PDMs may need extra stages of pipelinednother component that uses PDMs to detect patterns that are
match with longest PDM. longer than the width of PDM memories.

If the PDMs are configured to examine the same datal) Sequence of SegmenEvery long pattern can be broken
simultaneously, in most cases, only one PDM will output imto several short pattern segments. If we match the ordgr an
valid index for a pattern match. By extending the output bithe timing of the segment sequence, we can effectively tletec
to indicate its module number, the outputs from the paralltie corresponding long pattern.

PDMs can be merged to produce one index output. As in figure 5, the long pattern is divided into smaller

Depending on the memory content of the PDMs, more thaegments that fit in to a specific PDM. These segments are
one PDM can output valid indices at a given cycle. Multipletored in the PDMs along with a flag bit that indicates that
detections occur if one pattern is a substring, startindy wiit is a segment of a long pattern. The detected indices are
the first byte, of another pattern. We refer to such pattesnsfarwarded to the long pattern state machine (LPSM).
“overlapping patterns.” When more than one index is detecte 2) Programmable State Machinghe LPSM examines the
in the same cycle, it is sufficient to output the index for theequence of segment indices for the correct ordering and the
longest pattern since it also indicates the detection of thieing to detect the corresponding long pattern.
shorter patterns. As shown in figure 6, the LPSM is consists of the memory

The figure 4 represents the parallel PDMs with prioritgnd the pipeline similar to that of PDM. Unlike the PDM, the
support. Our design use chains of multiplexors to assign threemory only contains information for the current and thetnex
priorities as well as merge the PDM outputs. By storintstate”. Each state is expressed as number which is based on
the longer of any conflicting patterns in the PDM with theéhe index of the pattern segments detected by the PDMs.
higher priority, the system is capable of detecting of a# th The memory entry in LPSM with the state information is
overlapping patterns. loaded using part of the index identified by the PDMs. The

The above PDM architecture allows the detection of patternsst of the bits for the index are stored in the memory to yerif
of lengths that are less than or equal to that of the widdste current state. The entry also has a type field that inecat
memory module from all the PDMs. We refer to such pattemuhether the current index is the first, the middle, or the last
as “short pattern.” segment of the long pattern. The entry also specifies what the

Divided segments of the long pattern maybe detectedifferent
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Fig. 6. Long Pattern State Machine
Fig. 7. Block Diagram of Short and Long Pattern Filter

next state is and when it is expected to be detected by the
PDMs.

The sequence matching process is only initiated when the
type of the current state indicates that it is the start of a
long pattern segment. The expected next state is forwarded
to the switched pipeline like the one used in PDM to add
the appropriate delay. When the next index reaches the end
of the pipeline, it is compared with the actual current state
determine whether there was a match.

When the previous next state is an exact match of the current
state at the end of the pipeline, the expected next state-is fo
warded in to the pipeline as before. If the expected nexeé stat
does not match the current state, this process is terminated
without any output. Otherwise, the process continues timil
current state is specified as the last segment of the longrpatt
Then the last matching index is forwarded as an index for tff: 8- An example of Aho and Corasick's Keyword Tree: 6 byaes
detected long pattern. optimized away.

3) Parallel LPSM: Depending on the depth of the LPSM

memory and the long pattern indices, more than one entryl) Reusing Memory EntriesSince the multiple index se-

maybe necessary for the same address. In order to addiggs,ces can be tracked by the parallel LPSMs, they can be
this, more than one LPSM can run in parallel to detect MOffogrammed to reuse pattern segments that appear in more

than one sequence of states. than one pattern. By reusing the pattern segments for more

In order to interoperate between the LPSMs, the match Iﬂﬁ%n one pattern, the memory requirement for PDM can be
is forwarded to the modules that contain all the correspundi o q,,ced.

next state for the current state. When any of the LPSM reseive a4 and Corasick’s keyword tree [15] is used in many ef-

the match bit, its expected next state is forwarded 10 thejont software pattern search algorithms, including thers
pipeline regardless of the result in its own comparator.  |pg [16]. This algorithm is used in the FPGA implementation

to reduce the hardware area [4]. We also apply the algorithm
C. System Integration and Features to configure the PDM memories.

Figure 7 is a simplified block diagram of our dynamic deep A keyword tree in figure 8 is one way to store a set of
packet inspection system. As shown in the figure, the shgdtterns into an optimized tree of common keywords. The
patterns can be detected using only the PDM whereas ttanversion not only reduces the amount of required storage,
long patterns are detected using both the PDM and the LP3Mt also narrows the number of potential patterns as therpatt
modules. search algorithm traverses the tree.

Unlike the FPGA designs, which required functional circuit First, the pattern set must be analyzed to form the keyword
changes, this design only requires updating memory valuégges. Once the keyword trees are generated, its keywords
Therefore, the above system takes much less time to update stored as pattern segments in the PDMs and the edges
the inspection rule set than the systems that require clsangee stored as the state transitions in the parallel LPSMs.
in hardware. This optimization allows the duplicate pattern segmentsdo




the filter for a given threat profile. Depending on the pattern
"pattern2 set, the parameters of the architecture may differ drasétic
EE— P to optimize the resource utilization. For example, the giesi
may decide that LPSMs are unnecessary if all the target
patterns are short and uniform in length. On the other hand,
the designer may choose to have small PDM followed by
“patternl” many parallel LPSMs if the patterns consists of repetitise s
of common substrings.

Determining the parameters of the architecture is a complex
process which effects the behavior of the system. However,

Finite Automata

LPSM Memory 1 LPSM Memory 2 this process is beyond the scope of this paper. Therefore,
S Index for ) Next We attempt to describe one system we have implemented to
S % Next "patterny” 74 State successfully map the entire Snort rules.

State e 1) PDM Parameters:The length of the patterns range from
Index for > 1 to 122 bytes in Snort rule set. The contents of the patterns
"pattern1"\____J Index for — vary from binary sequences to ASCII strings. Therefore, we

"pattern2" design the filter to support patterns of various lengths as

well as the content. For the pattern set, using differerg siz
Fig. 9. Regular expression: (‘patternl”)+ “pattern2” - amemore instance. memories in the PDMs can increase the memory utilization
of “pattern1” followed by “pattern2 and decrease the logic area. However, we choose to set the
dimension of all the PDM to be same to simplify of the design
. . rocess.
collapsed into a single segment to save PDM memory spafe . . . . .
P 9 g Y SP8%Crhe dimension of the memory in each PDM is 146 bits

2). Regular Expressionin addition to keeping track of by 512 entries. The memory is wide enough to store all the
multiple long patterns, the parallel LPSMs can be prograchme )
. mformation necessary to detect up to 17 bytes long pattern.

to detect regular expressions.

Regular expression can be represented in the form of Nl%r f||te_r, eight of these_P[_)M units are connected in parallel
to provide 8-levels of priority.

[6], [7]. Once the NFA representation is formed from regular The filter takes two consecutive input bytes to generate the

tec;q?rrlzsﬁg;’ :rgigcboe rr:;;gc??)d ?;et%glli/rlsd\?vsr:ﬁgltﬁg ;[rhaenlsri]tl?cl)%%it address for the PDM memories. As we mentioned in the
9 y rchitecture description, the minimum pattern length far o

from each node can be mapped on the parallel LPSMs. Eor

the same current state entry, each LPSM can point to the nﬂ%(?r’ therefore, is 2 bytes long. Since single byte patten

state that is the next node of the NFA. In similar fashion, thee more eff|C|entIy_ detected using byte decoders, we do not
map them on the filter.

often more compact DFAs can also be mapped in to the deS|gr]|_he hash function logic consists of series of multiplexors

memory [17]. . ) .
For instance, the node with edges that points to it self art10 |.ndependently choose any 9 bits of the 16 bits. The hash

o logic in each PDM are individually configurable to give more
to another node, as shown in figure 9, can be mapped Slf'f(:exibility for the programmer

that the next state stored in one LPSM is the same index a LPSM P The desi . f eiaht units of
the current state while another LPSM would have next StaE'I:DS)Ms eacha\:\itmhe;%rst;it E z?gn consists o €9 tulnr:ts 0 h
index that points to the second other node. ' y 1z memory entnes. A.t. oug
we found that 256 memory entries per LPSM is sufficient to
completely map the entire Snort contents, we use the bigger
IV. SNORT IMPLEMENTATION memory for easier filter programming in the future. Sinceheac
Snort is one of the most widely used network intrusiohPSM can match different sequence of pattern, the design is
detection system (NIDS) that uses deep packet inspectioncapable of reusing one short pattern segment up to eighstime
is open source software that can be configured with the set ofn order to save memory space, the hashing logic for LPSM
signatures that are used to identify network attacks. IreJunses portion of index bits to load the state information. The
2004, the Snort rule set contained 1,729 string patterrts tirzdex bits 11 through 2 are directly connected to the address
should to be searched dynamically in the network payload. © the memory while the rest of the bits are, later, matched
evaluate the effectiveness of our architecture, we imptemevith the memory content.
the filter based on the architecture to support the entiragtSno
rule set. Our design contains additional memory space flgr

. . 2 Pattern Software
flexible configuration in the face of new attacks.

Once the hardware parameters are set, the resulting datapat
can be programmed using several different algorithms. De-
pending on the complexity of the algorithms and the patterns

The dimension of the memories, the number of PDMs, thibere can be a big difference in compilation time as well as
number of LPSMs, and the hash functions are the architecttine program size. In general, reducing the size of the pmgra
parameters. These parameters allow the designer to castorntékes longer compilation time. However, smaller prograndte

A. Hardware Configuration



Let P = set of all patterns Let S = set of all preprocessed pattern segments
S = set of all pattern segments

L = maximum length of patterns for a PDM 1. Sort the order of patterns in S:
M = minimum length of patterns for a PDM a. Sort according to the priority, from the highest
to the lowest
1. Sortthe order of patterns in P from the shortest to b. For the patterns with the same priority, sort
the longest length. according to length, from longest to shortest

c. For the patterns without any priority, sort

2. For each patterns in P with length <= L. according to length, from the longest to shortest

a. Combine all the duplicate patterns ) )
b. Insert all the unique patterns into a new set S 2. Set hashing function parameters for each PDMs

3. For each patterns in P with length > L: 3. For each pattern in S with priority, starting with the

first of the set:

a. Generate indices using hash function for the
PDM, taking two consecutive bytes at a time

b. Map all the patterns into the PDMs:

a. Divide the pattern into segments of length L

b. If the length of the last segment of the pattern
is less than M:

- Add (L —the segment length) bytes of the - The overlapping patterns must be mapped
previous segment at the front of the last into correct PDMs according to their priority
c. Compare with S to combine duplicate patterns - If the entries for all the indices are not free,

change the target PDM and go to step 3a

c. If all PDMs are attempted, change the PDM
4. Compare the last segments with the other elements hash parameters, reset memory, go to step 3
in the set S:

a. Avoid assigning overlapping pattern as the last
segment by adding or subtracting bytes of the
second to last segment to the front

d. Insert all the new segments into the set S

4. For each pattern in S without priority, starting with
the longest pattern:

a. Generate indices using hash function for the

PDM, taking two consecutive bytes at a time

Map all the patterns into the PDMs:

- If the entries for all the indices are not free,
change the target PDM and go to step 4a

c. If all the PDMs are attempted, change the PDM

Fig. 10. A simple algorithm to divide patterns for PDMs hash parameters, reset memory, go to step 3

b. If not possible, make sure the last segment is b.
the longest of all the overlapping segments

. . . Fig. 11. A simple algorithm to map the preprocessed segmisttsPDMs
to yield cleaner indexing result. The system performanagsst

constant, regardless the size of the program.

Due to variety of possible algorithms and optimizationd thajong with the time delay between subsequent segments and
can be applied to program the filter, we believe this stepsis althe type flags. These data are programmed into LPSM to keep
beyond the scope of this paper. Therefore, we present a f@uck of the long patterns.
direct and effective algorithms used to map the entire patte 2) Programming the Filter:All the PDMs and the LPSMs
set defined in the Snort rules. are memory mapped. As far as the programmer is concerned,

1) Pattern Preprocessingror the above hardware, the longhe filter can look like a large memory. The parameters of
patterns must be broken into shorter segments of 17 bytRg hash functions can be also treated as a memory mapped
or less. Due to the priorities assigned to the PDM units, thecation. Our implementation uses two ports to program the
short patterns do not have to be unique. However, elimigatifilter, one for the memory modules in the PDMs and LPSMs
duplicate patterns would save memory space. In order gad the other for programming hash functions.
identify each pattern with an unique index, the last segmentBefore the filter is programmed, the data for the pattern
of every pattern must be different. matching modules must be mapped on to a virtual filter with

We use the algorithm described in figure 10 to break th@me configuration. The mapping procedure is necessary to
long patterns into smaller segments that fit in the PDMs. Thigtermine exact address locations for all data. Once tfeeislat
algorithm produces a list of segments containing overlagpicorrectly mapped in to the virtual memory space, prograngmin
patterns. The overlapping patterns can assert detectionghie filter is equivalent to writing into a memory.
several PDMs in a single cycle. By assigning higher pridity  The list of pattern segments, their length, and the control
the longer of any two overlapping patterns, the detectiahef information from the preprocessing step are mapped on to
longer index also indicates the detection of shorter padterthe PDMs. Our mapper uses an algorithm in figure 11 to
There is no need for priority for the non-overlapping pater incrementally fill the PDM memory according to the pattern

If any segment of the long pattern is an overlapping pattersegment priority and the hash value. If the hash functids fai
it must have the highest priority. Such priority is autoroally to map the patterns, it simply changes the hashing parasneter
assigned when the algorithm divides the pattern into maimuo re-map the patterns.
lengthed segments. These simple algorithm mapped the entire Snort on to our

Once the list of pattern segments are generated, it canibiial implementation. However, the segments were nohve
used to generate index sequences for all the long pattemtistributed into all the memory modules. A better algorithm
When the long patterns are divided into smaller segmergs, ttan use the distribution of the patterns in the memory and the
corresponding sequence of segment identifiers are recorfieduency of possible indices for each pattern to efficientl



[ Module | Area | UnitsxArea [[ Cr-path | BW #of | Total |Mem| Gates

PDM Logic | 0.075mm?2 | 0.600mm?Z || <L0 ns Design Device| Ghps)| Bytes | Gates| (kb) | Byte
LPSM Logic | 0.024mm? | 0.188mm? || <1.0 ns Chomsmith | Virtex 4
PDM Mem | 0.844mm? | 6.752mm? || 1.12 ns RDL-+ROM Lx15 | 265 | 22340 | 4690 | 162 | 021
LPSM Mem | 0.168mm? | 1.342mm? || 1.12 ns = aker Prasanmal Ve
[ DPFFiter | - | 8.882mm? || 1.121s | USC Unany | Protoo| 179 | 8263 | 2892% 0 | >0.35
TABLE | Cho-MSmith .
ASIC DESIGN AREA OF THE FILTER USING).18um TECHNOLOGY ASIC SRAM ASIC | 7.04* | 223407 | 11163 | 864 | 0.50
Cho-MSmith | Spartan3
Decoder 1500 | 2-00 | 20800| 1693 0| 0.81

Sourdis etal. | Virtex2

map the pattern. Such mapping analysis will take longer Pred. CAM 3000
execution time Clark-Schimmel | Virtex
’ RDL based 1000

2.68 | 18031| 19902 O 0.97

0.80 | 17537| 1969¢ 0 1.1€

The sequences of indices and other control fields are FranKin- VirtexE
mapped on to the LPSMs. Each index is mapped on to ofe ytchings 2000 | 040 | 8003 | 20618 O]  2.58
LPSM pointing to one or more LPSMs that matches the gorhale etal. | VirtexE
corresponding next index. If there are patterns with same CcAM 1000 | 218 640 | ~972z 24 15.1p

beginning indices, the programmer can choose to use only or#endwidth measured from ASIC design using ubdibrary _
- Patterns are using only about half of the maxmwapacity of the filter
LPSM to keep track of all the patterns until it branches ofi Logic resource for the pattern index encodewisaccounted
to different patterns. This optimization will allow the wsrd
entries of the LPSMs to be used for other sequence of patterns TABLE I
After the data is successfully mapped on to the virtual filter PATTERN FILTER COMPARISONCHART [3], [7], [9]-[11], [14], [18]
the memory values can be directly copied in to the filter

memories.

C. Results the area and the critical path is limited to the memory maslule

in the design. The area for the processing modules account fo

The hardware design is written in structural verilog and thgss than 9% of the entire design while the rest of the area is
programmer is written in C++. As described in the previousccupied by the memory modules.

sections, the hardware is composed of 8 parallel units of DM The critical path for the entire design is dictated by the

and 8 parallel units of LPSMs. memory which can run at a speed of 893 Mhz. Since the filter

/As of June 2004, there are total of 1,729 unique patterps, ¢ can consume 1 byte of data at each cycle, the bandwidth
with lengths 2 to 122 bytes in Snort NIDS. The total numbq{f the filter is 7.144 Gbps.

of bytes that the filter need to compare are 22,340 bytesgUsin
the simple algorithms, the programmer successfully corégu against other recent pattern filters built using FPGAs. The

the hardware to f|Ite_r the entire set of pat_te_rns._ new design is indicated as ASIC SRAM. With Snort NIDS
The pattern mapping would be more efficient if the memorF(

Table Il compares the FPGA resources needed for the filter

usage distribution and the index information of patterns a atterns, our ASIC filter's gates per byte is relative corapy

. ; : .10 the smallest design in FPGA. However, only half of the
used. Although our algorithm does not consider them in (!w"?ilter capacity is utilized with Snort NIDS. By applying new

the mapping process, the hardware still proved to be roblﬂ)er)gramming algorithm and adding new patterns to the set,
enough to store the rule set.

During the programming process, 374 long patterns a%%eS%?qtes per byte may possibly decrease to below the smalles

transformed into 752 short pattern segments; making tfa to
number of patterns for the PDMs 2,107. Along with the
segments, the LPSMs are programmed to make up to 7 state
transitions. V. PARALLEL STREAM SCANNER
The entire pattern set occupies approximately 50% of the
PDM and 18% of LPSM memory, leaving enough space manyln practice, the network traffic can be divided into seperate
additional patterns. In fact, given a complex algorithmtthatreams based on the packet information. For instance, ac-
reuses duplicate substring, the filter can have more thabldoucording to study conducted by MCI in 1997, approximately
the number of patterns defined in the Snort NIDS. 70% of the Internet traffic accounts for web transactionsctvhi
On an AMD Athlon XP 1800+ processor under cygwinuses port 80 under TCP/IP [19]. Using the static header
the total runtime of the programmer to process and magformation, two independent data streams can be formed by
the patterns into the virtual memory space is 771 msec. \Weperating all the web traffic from the rest. Accordinglye th
generated the memory modules in Verilog with the contentsle set can be divided into two sets for use in two parallel
of the virtual memory to verify our design in simulatiorfilters to scan each stream. Therefore, under normal network
environments. traffic condition, one can expect bandwidth to increase by
We synthesized and routed the filter in ASIC using Qub8 43%. If the web traffic accounts for 50% the same hardware
technology in Cadence Synopsis tools. As shown in tablewpuld be able to filter at two times the rate.



Data Input
N-bytes/cycle C. Summary

Table | shows that the memory accounts for 91% of the

P:Cket total die area in our initial implementation. Since memary i
Classifier each pattern matching unit will be adjusted according to the

rule set size, the entire design size will be increased due to
redundant hashing logic, packet classifier, and the additio
FIFOs.

When the network traffic load is balanced equaly over all
the matching units, the maximum bandwidth of the entirerfilte

r

I I | byteicycle ] byte/cycle is multiplied by the number of the units. On the other hand,
Patt. | Patt. | Patt. | *®® | Patt. when the traffic is not distributed evenly, only one unit may b
Match | Match | Match Match

doing all the work, thus making the minimum bandwidth to

Unit Unit Unit Unit

1 > 3 N equal the filtering rate of one unit. For example, if our it

j i - paf[tern match!ng unit was _successfully divided into 4 serall
Y units, the maximum bandwidth of the system would be 28.576

Multiplexor Gbps whereas the minimum bandwidth will equal to the initial
v implementation of 7.144 Gbps.
Detected Pattern Index
Fig. 12. Parallel Stream Scanner is composed of packetifabassllowed VI. CONCLUSION

by parallel pattern matching units. In this paper we describe a novel architecture for pattern

matching co-processor for network intrusion detectiorieayis
The co-processor is RAM-based design that is programmable
A. Packet Classifier using the list of substrings and the state transistionseffis
] o ] cient pattern matching engine is capable of filtering thetimul
If the network traffic statistic is available, we can strucme gigabit network traffic. Since the patterns are progragm
ture our filters based on the information to increase thﬁ, changing the contents of the RAM, the architecture can be
performance. As the Internet example suggests, our apProggeq to implement designs in FPGA as well as ASIC.
divides the network traffic as well as the pattern matching \we have shown that our pattern filter is capable of yielding
unit according to the traffic statistics to effectively inase performance that surpasses the most recent FPGA imple-
the performance by scanning several independent streamgnifhations while enabling the users to program it without
pargllel. _ _ having to regenrate and reconfigure the hardware. Such quick
Figure 12 shows the architecture that parallelizes thepatt configuration may become critical, as the rate of emergence
detection process in terms of streams. The packet classifighew attack increase.
examines the static information of the packet to de-m@ipl we further developed our architecture by presenting a
the packets to appropriate pattern match engine. Given §imple structural modification to the initial design to dhta
parallel pattern matching units, the packet classifier ndiest higher bandwidth. By effectively dividing the network tiiaf
multiplex the data at N times the filtering rate of individuahased on the network statistic, we show that the maximum
pattern matching unit. Since the classifier does not have gandwidth of the new design can be multiplied by the number
classify the packet for every byte, its bandwidth can hgf smaller parallel units.
multiplied by widening the input data bus.
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